

Managing Requirements for a System of Systems
Here is a look at needed processes when developing a system of systems, including
applying requirements management, considering dynamic scope, and using standards to
interface systems.
by Ivy Hooks

Applying CMMI to Systems Acquisition
The best practices in this article form a foundation for an acquisition process discipline that
provides repeatable product and service development with high levels of acquisition success.
by Brian P. Gallagher and Sandy Shrum

A Recommended Practice for Software Reliability
This article reports on advances and revisions to the “American Institute of Aeronautics
and Astronautics Recommended Practice for Software Reliability” as they apply to software
reliability engineering.
by Dr. Norman F. Schneidewind

Understanding the Roots of Process Performance Failure
This article summarizes how the results of a Department of Defense (DoD) cross-program systemic analysis help
provide insight into the causes of recurring process shortfalls in DoD programs.
by Dr. Robert Charette, Laura M. Dwinnell, and John McGarry

Software Rejuvenation
These authors discuss a design approach to make software more trustworthy that is easy to apply, uses a little central
processing unit, increases software reliability by two orders of magnitude, and is recommended for software-intensive
systems.
by Lawrence Bernstein and Dr. Chandra M. R. Kintala

Enterprise Composition
This article defines a new, agile, incremental approach to enterprise information system (EIS) architectures
and enterprise composition, and includes an example of how it supports the creation and evolution of large
EIS architectures.
by John Wunder

Cover Design by
Kent Bingham.
Cover Photo

© Image 100 Ltd.

3

7

12

26

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering August 2004

4

8

13

18

23

27

From the Publisher

Coming Events

Call For Articles

Web Sites

BackTalk
CrossTalk Archives

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions.Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center.All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: stsc.webmaster@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 17.

Ogden ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

SystemsSystems ApprApproachoach

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Ihave heard many different definitions and uses for the term system with respect to
software. Some consider a system to be a collection of software, while others con-

sider it to be the combination of hardware and software merged to perform functions
not possible by the individual parts. Some take a holistic approach, including hardware,
software, documentation, communication, cost, quality, and even people in their defi-
nitions. Perhaps this myriad of definitions is why we also have so much controversy
over what systems engineering truly entails.

Apparently, system is in the eye of the beholder. An avionics system often consists of a guid-
ance system, a radar system, a flight control system, a fire control system, and others. However,
the avionics system is only one part of an aircraft system. Different stakeholders will draw
boundaries around the system at different locations. Our authors this month each have their own
perspective for system as it relates to the information they are trying to share. However, they do
keep in common Webster’s definition of system: “a group of interrelated, interacting, or inter-
dependent constituents forming a complex whole.”

We begin this month with Ivy Hooks’ article, Managing Requirements for a System of Systems
(SOS). Hooks’ concerns go beyond the already-present issue of systems and address SOS. The
SOS performs functions not possible by any of the individual systems operating alone; the
whole is greater than the sum of the parts. An SOS continually evolves as needs change and
newer technologies become available. Such large groups have complex requirements that must
be carefully planned and managed.

In Applying CMMI to Systems Acquisition, Brian P. Gallagher and Sandy Shrum try to alleviate
the difficulties faced by organizations acquiring systems by introducing the Capability Maturity
Model® Integration (CMMI®) Acquisition Module (AM). The CMMI-AM is a streamlined ver-
sion of CMMI best practices that can be implemented to help establish effective acquisition
practices within acquisition programs.

Dr. Norman F. Schneidewind discusses the needed revisions to the American Institute of
Aeronautics and Astronautics’ (AIAA) publication, “AIAA Recommended Practice for Software
Reliability (R-013-1992)” in A Recommended Practice for Software Reliability. While focusing on soft-
ware reliability, this document and its proposed revision also consider hardware and ultimately
systems characteristics.

Dr. Robert Charette, Laura M. Dwinnell, and John McGarry lead our collection of sup-
porting articles with Understanding the Roots of Process Performance Failure. In this article, the authors
reference the results of numerous program assessments to provide guidance on how to coun-
teract prevalent program performance issues.

Next, Lawrence Bernstein and Dr. Chandra M. R. Kintala discuss one approach to software
fault tolerance in Software Rejuvenation. Bernstein and Kintala recommend stopping a software
program at opportune intervals as a way of cleaning up the internal state of the system and then
restarting it at a known, healthy state to prevent a predicted future failure.

Finally, in Enterprise Composition, John Wunder discusses enterprise composition as an
approach to enterprise information system architectures and shares how it supports the creation
and evolution of large enterprise information system architectures such as the Air Force’s
Global Combat Support System.

We need to look at our mission as part of the big picture described by John Gilligan, Air
Force chief information officer, in his January 2004 CrossTalk article: “… individual soft-
ware solutions must be integral to and tightly integrated with all components of a system, or in
most cases with the system of systems. We need to integrate software into our overall systems engi-
neering processes.”

Whether your focus thus far has been on software engineering or systems engineering, there
exists a need in our defense community to focus on systems engineering and to understand how
software engineering plays a critical role in this interdisciplinary approach.

Defining Systems

August 2004 www.stsc.hill.af.mil 3

Elizabeth Starrett
Associate Publisher

Systems Approach

4 CROSSTALK The Journal of Defense Software Engineering August 2004

There is much in literature depicting
system of systems (SOS) [1]. I will use

the characteristics Maier [2] has defined
(in boldface below), followed by my sum-
mary of each.
1. Operational Independence of the

Individual Systems. If you decom-
pose the SOS, each component system
can still perform independently of the
others.

2. Managerial Independence of the
Systems. Each individual system has
its own purpose independent of the
others and is managed separately for
that purpose.

3. Geographic Distribution. Often
individual systems are distributed over
large geographic areas.

4. Emergent Behavior. The SOS per-
forms functions not possible by any of
the individual systems operating alone.
The reason for developing the SOS is
to obtain this unique behavior.

5. Evolutionary Development. An
SOS is never finished; it continually
evolves as needs change and newer
technologies become available.

Maier defines an SOS as having all or a
majority of these characteristics.

Evolution of SOS
The Past
In the first space systems, we built a sys-
tem to do all of the functions simultane-
ously. The responsibility for the system
fell under one organization, although the
work may have been parceled out to many
organizations. There was a central point of
control. For example, when the National
Aeronautics and Space Administration
(NASA) built the Apollo space vehicle 40
years ago, NASA built all elements of the
vehicle, its launch pad, and many other
ground facilities.

When I toured the NASA Goddard
Space Flight Center nearly 20 years ago, I
questioned the need for dozens of differ-
ent data processing systems – one for each

satellite program. The person providing
the tour had no idea why things were like
they were, but I later talked to a NASA
headquarters person who explained it very
clearly. “Of course fewer systems would
be better, but we can’t take the risk. If
Program A and Program B agree to share
a ground data system and then one or the
other gets cancelled, the remaining pro-
gram will not have the funds for its data

processing system. To protect against this
highly probable scenario, it’s every man
for himself.” This can still happen.

The Present
Today, we have a number of existing sys-
tems that serve many other systems. These
systems, e.g., Telemetry Data Relay
Satellite System and the Global
Positioning System (GPS), enable multiple
new systems to accomplish their mission
without reinventing the wheel or duplicat-

ing capabilities. Writing requirements to
interface to these existing systems is gen-
erally straightforward, involving an under-
standing of what the new system must do
to interface to the existing system.

Interfacing to a developing system
where its design is evolving even as your
design is evolving is much more difficult.
In the automotive industry, with many
computers under the hood of every vehi-
cle, interfaces are a nightmare. One story I
was told involved creating a new dash-
board – an SOS comprised of entertain-
ment, car information, temperature con-
trol, air bags, etc. The designer for the air
bag system noticed that if anyone else sent
a particular command on the bus, then the
air bag would deploy. “But nobody would
ever do that,” he said. When the dash-
board was assembled and an unsuspecting
person moved the temperature control,
the air bag deployed.

Managing Requirements
If you have not already, you will probably
encounter an SOS in the near future.
Although I wrote about managing require-
ments for single systems [3] without
regard to the SOS, the basic principles
apply. In fact, the basic activities shown in
Table 1 are even more essential for man-
aging an SOS than for a single system. In
a single system, management is by a pro-
gram or project manager. Requirements
elicitation is the responsibility of system
engineers or analysts who report to the
program/project manager. In an SOS,
these roles will need to be performed, but
will be difficult organizationally. While
using standards can benefit almost every
system, standards may be essential for a
successful SOS.

Strategic planning is essential for SOS
development. The overall vision must be
defined and embraced. Since an SOS does
not have a limited life cycle but continues
with the evolution of the SOS, its strategic
plan must also evolve. The SOS capabili-

Managing Requirements for a System of Systems
Ivy Hooks

Compliance Automation, Inc.

As we encounter more system of systems (SOS) and more complex SOS, we must consider the changes that will be required
of our existing processes. For example, requirements management has been focused on a system or a product. This article
looks at how the SOS has evolved, including what parts of requirements management apply to the SOS and where the process
will need revision. It also discusses the need for dynamic scope for the SOS and more use of standards to interface the sys-
tems. Challenges definitely exist in SOS, not just in the Department of Defense but also in every aspect of the networked
world. Our existing requirements management process is necessary, but not sufficient for the SOS.

“The SOS scope
creates the vision and

sets the bounds for what
is to be accomplished.

Scope includes the need,
goals, and objectives for
the SOS ... Additionally

the SOS scope will
need to address all the

system-to-system
interfaces within

the SOS.”

Managing Requirements for a System of Systems

August 2004 www.stsc.hill.af.mil 5

ties must evolve as needs change and new
technologies become available.

SOS Scope
In product development, it is essential to
identify the scope of the product before
writing requirements. It is even more
important to define the scope of the SOS
before embarking on any aspect of
requirements writing. The SOS scope cre-
ates the vision and sets the bounds for
what is to be accomplished. Scope
includes the need, goals, and objectives for
the SOS. It also includes operational con-
cepts for all life-cycle phases from the
viewpoint of all stakeholders. Scope
includes the external drivers, e.g., regula-
tions and external interfaces. Additionally
the SOS scope will need to address all the
system-to-system interfaces within the
SOS.

If we can identify the problem to be
solved, then we can determine our need,
goals, and objectives for the SOS. An
example problem might be to obtain more
accurate weather data using new technolo-
gy in the following example:
• Need. Validate using the new technol-

ogy to increase weather forecast accu-
racy.

• Goals. Fly instruments A and B to
obtain information. Analyze informa-
tion and make predictions. Compare
predictions with and without the new
technology.

• Objectives. Fly instruments using
existing satellite and launch vehicle
within 24 months. Obtain data for 24
months. Provide comparisons within
two weeks of first obtaining data and
biweekly thereafter.
Often we see processes that ask for

requirements up front. Generally what is
meant is that the need, goals, and objec-
tives should be identified and operational
concepts developed. It is premature to
write requirements until all stakeholders
have agreed on the operational concepts.

During the scope discovery process,
there are a number of questions that must
be answered (see Table 2). It can be bene-
ficial to try to answer these questions ini-
tially to understand how much is known
and what is unknown. If there are many
unknowns, this will be a much more
involved and drawn-out process.
Significant engineering and analysis
efforts, involving conceptual studies, trade
studies, modeling, simulation, and proto-
typing, may be required to obtain the
answers. The results of this effort may
culminate in modified goals and objec-
tives.

In the preceding example, the opera-

tional concept might start with something
like the following: We will launch the
instruments using an xyz class launch
vehicle out of the Kennedy Space Center.
We will install the instruments in
Company A’s satellite using the satellite for
power, pointing, and communications. We
will spend three weeks doing instrument
checkout on-orbit and this will include all
communications to ground facilities.
Following checkout, we will point the
instruments per the data-gathering plan
and begin taking data. This data will be
downlinked daily by the satellite. In the
analysis phase, weather forecasters will
combine this with other data to make a
forecast that will be compared to a fore-
cast made without the instrument data.
Both forecasts will be compared to the
actual weather to determine the accuracy
of the forecasts.

In this example, we have just barely
started; however, once the questions in
Table 2 are answered we have the next
level of questions (see Table 3 on Page 6).

As difficult as gathering this informa-
tion will be for a single system, it will be
magnitudes harder for an SOS. In order
for the SOS to succeed, these questions
must be answered. The bounds for the
SOS must be clearly defined, including
operational concepts for each life-cycle
phase and all transitions.

The list in Table 3 is a starting point.
As you can see from our example opera-
tional concept, we have many other ques-
tions. Also, this SOS is planned for a four-
year period at the least: two years of devel-
opment and two years of operation. We
already know about ground data system
changes that are going to need to be

accommodated over this time period. If it
is successful, we may want to continue
using these same instruments for a longer
period.

It is not possible to overstress the need
for full stakeholder participation and for
full life-cycle coverage of operational con-
cepts. Information is needed to feed plan-
ning, cost, and schedule estimating, and
for developing complete requirements.
This scope information must be provided
to all stakeholders so they understand and
agree to the scope before venturing for-
ward, or the risks will be unmanageable.

Stakeholder buy-in to the SOS scope is essen-
tial for a successful SOS and for writing good
requirements.

Since one of the characteristics of an
SOS can be that of continual evolution,
this implies that the scope will also evolve.
This does not mean that we can just make
it up as we go along. We need answers to
the questions in Tables 2 and 3 to begin.
We must understand the big picture,

1

Requirements Basics
Process Benefit

= Define scope before requirements.

= Develop operational concepts for the entire
life cycle.

= Identify stakeholders and involve them from
the beginning.

= Identify external interfaces.

= Educate all writers and reviewers on scope.

= Educate all writers and reviewers on what
good requirements are.

= Capture rationale for each requirement.

= Capture verification method for each
requirement.

= Validate requirements as they are
submitted.

= Ensure each requirement is responsive to
the scope.

= Allocate each requirement to the next level.

= Bound the problem/solution space.

= Prevent requirements omissions.

= Prevent requirements omissions and
misunderstandings.

.

= Ensure the system works within the larger SOS.

= Share the vision; prevent misinterpretations.

= Get needed, clear, concise, and unambiguous
requirements.

= Capture corporate knowledge and limitations
imposed by existing systems.

= Think ahead to understand how to verify and
to ensure verifiableness.

= Reduce review time.

= Avoid requirement and scope creep.

= Ensure everything is allocated and required.

Questions To Be Answered

=What is the initial operational concept for
a nominal operation of the SOS?

=How robust does the system need to be in
response to off-nominal events?

=What is the high-level functional
architecture of the SOS?

=Which systems of the SOS already exist?

=How might the existing systems evolve
during the SOS life-cycle?

=How many new systems will need to be
developed to meet the need?

=Who are all the stakeholders of the SOS
across the entire life-cycle?

=When must the SOS be operational?

=How much money is available?

More Questions To Be Answered
=Who knows what about each existing

system?
=What reliable documentation exists for

each system?
=Who among the stakeholders can provide

added information about their systems?
=How can we contact and work with these

stakeholders?
=What are the interfaces that must exist

between existing and planned systems?
=Who controls each interface?
=What standards have been used by

existing systems that can enable the
interfaces?

=What are the standards that may be
available for new systems and future
systems?

=What are the regulatory requirements that
must be met in order to deploy the SOS?

=What changes can we anticipate over the
life cycle?

=What evolution in technologies can we
expect?

Table 1: Requirements Basics

Requirements Basics
Process Benefit

= Define scope before requirements.

= Develop operational concepts for the entire
life cycle.

= Identify stakeholders and involve them from
the beginning.

= Identify external interfaces.

= Educate all writers and reviewers on scope.

= Educate all writers and reviewers on what
good requirements are.

= Capture rationale for each requirement.

= Capture verification method for each
requirement.

= Validate requirements as they are
submitted.

= Ensure each requirement is responsive to
the scope.

= Allocate each requirement to the next level.

= Bound the problem/solution space.

= Prevent requirements omissions.

= Prevent requirements omissions and
misunderstandings.

.

= Ensure the system works within the larger SOS

= Share the vision; prevent misinterpretations.

= Get needed, clear, concise, and unambiguous
requirements.

= Capture corporate knowledge and limitations
imposed by existing systems.

= Think ahead to understand how to verify and
to ensure verifiableness.

= Reduce review time.

= Avoid requirement and scope creep.

= Ensure everything is allocated and required.

Questions To Be Answered

=What is the initial operational concept for
a nominal operation of the SOS?

=How robust does the system need to be in
response to off-nominal events?

=What is the high-level functional
architecture of the SOS?

=Which systems of the SOS already exist?

=How might the existing systems evolve
during the SOS life-cycle?

=How many new systems will need to be
developed to meet the need?

=Who are all the stakeholders of the SOS
across the entire life-cycle?

=When must the SOS be operational?

=How much money is available?

More Questions To Be Answered
=Who knows what about each existing

s

Table 2: Questions To Be Answered

Requirements Basics
Process Benefit

= Define scope before requirements.

= Develop operational concepts for the entire
life cycle.

= Identify stakeholders and involve them from
the beginning.

= Identify external interfaces.

= Educate all writers and reviewers on scope.

= Educate all writers and reviewers on what
good requirements are.

= Capture rationale for each requirement.

= Capture verification method for each
requirement.

= Validate requirements as they are
submitted.

= Ensure each requirement is responsive to
the scope.

= Allocate each requirement to the next level.

= Bound the problem/solution space.

= Prevent requirements omissions.

= Prevent requirements omissions and
misunderstandings.

.

= Ensure the system works within the larger SOS

= Share the vision; prevent misinterpretations.

= Get needed, clear, concise, and unambiguous
requirements.

= Capture corporate knowledge and limitations
imposed by existing systems.

= Think ahead to understand how to verify and
to ensure verifiableness.

= Reduce review time.

= Avoid requirement and scope creep.

= Ensure everything is allocated and required.

Questions To Be Answered

=What is the initial operational concept for
a nominal operation of the SOS?

=How robust does the system need to be in
response to off-nominal events?

=What is the high-level functional
architecture of the SOS?

=Which systems of the SOS already exist?

=How might the existing systems evolve
during the SOS life-cycle?

=How many new systems will need to be
developed to meet the need?

=Who are all the stakeholders of the SOS
across the entire life-cycle?

=When must the SOS be operational?

=How much money is available?

More Questions To Be Answered

Systems Approach

6 CROSSTALK The Journal of Defense Software Engineering August 2004

including the environment and the con-
text in which the SOS must exist and
operate. We need a plan from which to
base our efforts – not just a random
effort.

Management
It is not immediately clear after reading
many SOS articles who actually manages
an SOS effort for different endeavors.
Success depends on someone being in
charge. There must be an SOS manager,
whether or not that manager has any
direct control over the individual systems.

Likewise, it seems clear that there must
be SOS architects and system engineers to
facilitate the efforts for scope and require-
ments definition, to manage the interfaces,
and to provide the sustaining effort essen-
tial to an evolving SOS. The organization-
al affiliations of these people may be
many, and they may be selected for their
experience with the systems that comprise
the SOS.

SOS Requirements
With the scope clearly defined, we can
now look toward writing requirements for
the SOS. We are doing this with at least a
conceptual architecture in mind and with
operational concepts that incorporate
existing, evolving, and new systems. The
requirements for the SOS will reflect capa-
bilities and performance implied by the
scope results as well as the limitations and
restrictions imposed by existing systems,
standards, and regulations.

Allocation
Although requirements will be written to
define the capability and performance of
the SOS, there is really no such product.

Therefore, it is critical that each and every
SOS requirement be allocated to an exist-
ing or new system or to an interface
between two or more systems. The SOS
manager is responsible for ensuring the
acceptance of allocated requirements by
each of the participating system managers
(those managers of existing or new sys-
tems within the SOS).

There may be situations where we will
use a system within the SOS but we will
never work with the manager of that sys-
tem; we will just use what is available as we
do with many commercial products today.
The SOS system engineers must anticipate
and incorporate possible changes to such
systems, e.g., Internet or GPS.

Rationale
For system managers to agree to the allo-
cated requirements, they must completely
understand each requirement allocated to
them and its relationship to the SOS
scope. By ensuring that rationale is pro-
vided with every requirement, this can be
accomplished. In those cases where a
requirement is allocated to more than one
system, the affected managers must work
with their counterparts to define the inter-
faces.

For example, the rationale might
explain how the requirement is con-
strained by an existing system. The man-
ager of that system can concur that the
requirement is correct, or can state that he
or she is planning changes that would
invalidate the requirement. If the manager
never sees the rationale, he or she may
assume that the requirement is caused by
someone or something else and never
acknowledge the planned changes to his
or her system.

The requirement will also provide
information about how it relates to the
scope so that as the scope evolves so will
the requirement.

Standards
The number of standards is downright
intimidating. Yet use of standards may
hold the key to making systems work
effectively together in an SOS. It is impor-
tant to note the impact of standards on
the development of cost-effective prod-
ucts. Having standards has enabled the
hardware developers to grow and expand
while reducing the price of goods to con-
sumers. There are also standards for soft-
ware, but fewer since software is a much
younger field of engineering.

We rely on these standards when we
buy a light bulb for our lamp, hook up our
new computer to our existing printer
cables, or turn on our laptop in airports

and hotels around the world. The Institute
of Electrical and Electronic Engineers has
thousands of standards to help engineers
understand what other engineers are talk-
ing about [4]. The American National
Standards Institute, the ISO [International
Organization for Standardization], and the
International Electrotechnical Commis-
sion are also providers of large numbers
of international standards.

Standards are not static and unchang-
ing; they are updated to account for
changes in technology and needs. New
standards are in development to fix per-
ceived problems. In many areas, using
standards is not a common practice, and
the design approaches currently being
taken will not effectively support an SOS.
Thus more emphasis upon standards is
essential to successful SOS development.

From the requirements arena, a stan-
dard is a requirement that is agreed upon
and understood by a wide range of practi-
tioners. Hardware and software designed
to interface standards allow each side of
the interface to build toward the middle
without extensive negotiations and modi-
fications as the two sides evolve. Using
standards also enables us to unplug one
system and plug in another that also meets
the same standard interface.

Defensive and Self-Healing
Requirements
One of the biggest examples of SOS
complexity exists in our world of comput-
er hardware and software. There are many
brands of computers, operating systems,
peripheral devices, device drivers, and
applications. These all are expected to
work together, but problems occur in get-
ting all of these individual systems work-
ing together as a SOS.

I have had so many problems with my
small personal world of creating a SOS
from commercial off-the-shelf products
that I cannot understand how anyone
keeps large networked systems opera-
tional. With hundreds of workstations,
networks, routers, etc., how does anyone
dare to ever make any updates?

For a robust SOS, if my system and
yours communicate or interact in any way,
we need to both protect against what can
happen at or across the interface. This
begins with each of us defining require-
ments that will protect our integrity
regardless of the other’s system. We need
requirements that defend against problems
like those experienced by the car dash-
board SOS. We need self-healing require-
ments for each system to enable its recov-
ery from the impact of other systems.

1

 be oper

=How much money is available?

More Questions To Be Answered
=Who knows what about each existing

system?
=What reliable documentation exists for

each system?
=Who among the stakeholders can provide

added information about their systems?
=How can we contact and work with these

stakeholders?
=What are the interfaces that must exist

between existing and planned systems?
=Who controls each interface?
=What standards have been used by

existing systems that can enable the
interfaces?

=What are the standards that may be
available for new systems and future
systems?

=What are the regulatory requirements that
must be met in order to deploy the SOS?

=What changes can we anticipate over the
life cycle?

=What evolution in technologies can we
expect?

Table 3: More Questions To Be Answered

1

 be oper

=How much money is available?

More Questions To Be Answered
=Who knows what about each existing

system?
=What reliable documentation exists for

each system?
=Who among the stakeholders can provide

added information about their systems?
=How can we contact and work with these

stakeholders?
=What are the interfaces that must exist

between existing and planned systems?
=Who controls each interface?
=What standards have been used by

existing systems that can enable the
interfaces?

=What are the standards that may be
available for new systems and future
systems?

=What are the regulatory requirements that
must be met in order to deploy the SOS?

=What changes can we anticipate over the
life cycle?

=What evolution in technologies can we
expect?

Managing Requirements for a System of Systems

August 2004 www.stsc.hill.af.mil 7

There seems to be a desire or maybe
even a mandate to merge new and existing
systems from disparate organizations to
achieve a new capability. This is often a
long and tedious process and in many
cases is simply abandoned in frustration.
For example, the National Oceanic and
Atmospheric Administration (NOAA),
NASA, and the Navy agreed to do a joint
project for developing new weather fore-
casting capability. NASA has had prob-
lems just having multiple NASA centers
working together on a project, and this
program interjected two other govern-
ment agencies. NASA was responsible for
developing the weather instrument. The
Navy was responsible for a launch vehicle
and a satellite to house the instrument.
The NOAA, NASA, and the U.S. Navy all
had a say in what the instrument was to
measure and responsibility for ground sta-
tions to receive the data. A requirement
that the instrument data had to be able to
be processed by both NOAA and U.S. Air
Force ground facilities only added to the
program’s complexity. NASA was named
the project lead.

Attempts were made by the project
team to develop operational concepts and
write high-level requirements. While the
team was able to document a lot of infor-
mation, they had no formal training in
developing operational concepts or writ-
ing requirements. This resulted in a system
specification that contained very low-level
requirements that constrained the instru-
ment design. As the NASA team struggled
to write requirements for their instrument,
it was clear that they did not know the
details for interfacing to the satellite or
launch vehicle. These interfaces and the
environments expected by and imposed
by the other systems are critical to writing
the instrument requirements; the Navy
was unresponsive to providing the data.
With unintentional constraints from
above and lack of information, it was
impossible to write good instrument
requirements.

This is not an uncommon situation; it
happens all too often on many govern-
ment programs.

The end of the saga was that the Navy
bailed out and withdrew its support;
NASA continued instrument develop-
ment to interface with an unknown launch
vehicle and satellite, and hardware and
software now exist. Will it ever be
deployed? That is a good question.

Conclusion
Requirements management will be an
important aspect of an SOS, as it is to all
systems. It is critical to do the prerequire-

ments work of scope definition, docu-
mentation, dissemination, and stakeholder
buy-in before the SOS requirements are
developed. Management of requirements
allocation will be a major activity more
than in single-system activities. Issues
related to allocation, interfaces, and infor-
mation transfer must be high on manage-
ment’s agenda and resolved swiftly.
Extended use of standards and develop-
ment of standards to empower an SOS
may be key to successful endeavors. Each
individual system must pay more attention
to its defensive and self-healing require-
ments to participate in future SOS.◆

References
1. Sage, A., and C. Cuppan. “On the

Systems Engineering and Management
of Systems of Systems and Federa-
tions of Systems.” Information,
Knowledge, and Systems Management
2 (2001): 325-345.

2. Maier, M. Architecting Principles for
Systems of Systems. Proc. of the Sixth
Annual International Symposium,
International Council on Systems
Engineering, Boston, MA, 1996: 567-
574.

3. Hooks, Ivy F., and Kristin A. Farry.
Customer Centered Products –
Creating Successful Products Through
Smart Requirements Management.
New York: Amacom, 2001.

4. Vonderheid, E. “Standards Hidden in
Plain Sight.” The Institute Mar. 2004.

About the Author

Ivy Hooks is president
and chief executive offi-
cer of Compliance
Automation, Inc., a com-
pany whose focus is
requirements. Hooks is

an internationally recognized expert,
author, and speaker on the subject of
requirements. She brings experience
from a 20-year career at the NASA
Johnson Space Center followed by 20
years experience consulting for govern-
ment and industry.

Compliance Automation, Inc.
1221 South Main ST
STE 204
Boerne,TX 78006
Phone: (830) 249-0308
Fax: (830) 249-0309
E-mail: ivy@compliance

automation.com

September 11-17
20th IEEE International Conference on

Software Maintenance
Chicago, IL

www.cs.iit.edu/~icsm2004

September 13-16
Embedded Systems Conference

Boston, MA
www.esconline.com/boston

September 20-23
Software Development Best Practices 2004

Boston, MA
www.sdexpo.com

September 20-24
8th International Enterprise Distributed

Object Computing Conference
Monterey, CA

www.edocconference.org

September 24-26
Internet, Processing, Systems, and

Interdisciplinary Research
IPSI 2004 Stockholm
Stockholm, Sweden

www.internetconferences.net/
industrie/stockholm.html

September 27-30
Better Software Conference and Expo

San Jose, CA
www.sqe.com/bettersoftwareconf

October 6-9
Grace Hopper Celebration of Women in

Computing
Chicago, IL

www.gracehopper.org

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

8 CROSSTALK The Journal of Defense Software Engineering August 2004

Applying CMMI to Systems Acquisition

Building on relevant best practices extracted from the Capability Maturity Model® Integration (CMMI®) Framework, the CMMI-
Acquisition Module defines effective and efficient practices for government acquisition organizations. Acquisition best practices are
focused inside the acquisition organization to ensure the acquisition is conducted effectively, and are focused outside the acquisition
organization as it conducts project monitoring and supplier oversight. These best practices provide a foundation for acquisition process
discipline and rigor that enables product and service development to be repeatedly executed with high levels of ultimate acquisition
success.

The Capability Maturity Model®

(CMM®) Integration (CMMI®) has
been applied successfully to systems
development and maintenance and has
helped organizations improve their pro-
ject management, engineering, and related
processes. In the Software Engineering
Institute’s (SEI) special report “Demon-
strating the Impact and Benefits of
CMMI: An Update and Preliminary
Results [1],” the following benefits were
reported:
• Boeing Australia experienced a 33 per-

cent reduction in the average cost to
fix a defect.

• General Motors experienced an 80
percent reduction in late deliveries.

• Lockheed Martin Integrated Systems
and Solutions experienced a 30 per-
cent gain in software productivity.

CMM-based process improvement has
enabled these organizations to more con-
sistently deliver products and services on
time, at high quality, and for the predicted
cost.

These gains are not the exception;
they are the norm. System development
organizations are making great strides in
transferring evolutionary capability into
their customers’ hands. Gains achieved by
Department of Defense (DoD) contrac-
tors are transferred directly to the fighting
men and women of our armed forces as
they become more capable and utilize
technology faster than ever before. In
addition to satisfied customers and a well-
equipped warfighter, the return on the
investment these organizations have
experienced from the implementation of
CMMI is substantial. For example,
Northrop Grumman [1] enjoyed a 13-to-
1 return on investment.

The acquisition process plays a critical
role in how the government transfers
increased capabilities into operational use.

Acquisition professionals must acquire
complex systems and systems of systems
in order to provide these enhanced capa-
bilities. If using CMMI can help the
developers of these systems, why not
apply CMMI practices to help the acquir-
ers as well?

CMMI Acquisition
Module
In late 2003, a few colleagues familiar
with both acquisition practices and
CMMI were asked by Mark Schaeffer,

principal deputy, Defense Systems, Office
of the Under Secretary of Defense
(OSD) for Acquisition, Technology, and
Logistics (AT&L), to interpret CMMI for
use in acquisition organizations. The goal
was to publish a streamlined version of
CMMI best practices that could easily be
implemented through self-improvement
and self-assessment activities to help
establish effective acquisition practices
within acquisition programs. The result
was “CMMI-AM [Acquisition Module]”

[2], a technical report published by the
SEI. Acquisition professionals in govern-
ment and industry can use this module to
improve their processes.

The CMMI models and the CMMI mod-
ules are two different types of products.
The CMMI models, which are part of the
CMMI Product Suite, are the official doc-
uments that contain CMMI best prac-
tices, and can be used with a Standard
CMMI Appraisal Method for Process
Improvement (SCAMPISM) Class A
appraisal to achieve a maturity level.

The CMMI modules, however, are
documents that are excerpts from a
CMMI model with possible trial additions
and are available for piloting and use for
process improvement. Modules that are
deemed successful may at some time
become part of a CMMI model. A mod-
ule can be used to identify strengths,
weaknesses, improvement opportunities,
risks, and best practices during an infor-
mal gap analysis or as informative mater-
ial during a benchmarking SCAMPI Class
A appraisal using a CMMI model.

Although CMMI contains many best
practices that can help an acquisition
organization, CMMI-AM provides addi-
tional information designed to help
acquisition organizations more easily
apply CMMI best practices to their
processes.

Acquisition Challenges
Systems acquisition is no easy task. If you
think about how complex commercial
products are, you are seeing just the tip of
the iceberg. A family car is the result of a
complex mix of subcomponents that are
engineered into a system. Most DoD
weapon and information systems are at
least this complex.

Acquirers must not only understand
the operational context and codify the
desired capabilities or system require-
ments into something that can be imple-
mented by a development team, but also
they must continuously evaluate both the

Brian P. Gallagher and Sandy Shrum
Software Engineering Institute

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM CMM Integration, SEI, and SCAMPI are service marks
of Carnegie Mellon University.

“When the supplier’s
processes are mature,

the acquirer with
immature processes

often encourages short
cuts and interferes with

the supplier’s ability
to meet requirements

thus adversely
affecting quality, cost,

and schedule.”

August 2004 www.stsc.hill.af.mil 9

Applying CMMI to Systems Acquisition

evolving systems and the development
teams’ ability to deliver the systems on
time and according to requirements,
including cost, fit, and function. The
acquirer must also identify the risks
involved in selecting one development
team or set of suppliers over another, and
collaborate with them proactively over
the life of the program to ensure risks
imposed by the acquirer’s environment or
the operational environment are identi-
fied and mitigated.

Unfortunately, the state of acquisition
practice is not what it could be.
Difficulties abound in government and
industry. Increasing complexity of the
systems being acquired has overtaken the
experience of those acquiring them.
Acquisition professionals often do not
have the systems engineering or project
management experience needed to meet
acquisition objectives.

Many acquirers find it difficult to do
the following:
• Establish robust systems engineering

practices within the program office.
• Stabilize requirements well enough to

adequately work with developers/sup-
pliers.

• Estimate the time and effort required
for the program to deliver a usable
capability or system.

• Enforce schedule milestones and on-
time delivery of acquisition products
and services.

• Assess the technical risk involved in
acquiring particular products from
particular suppliers.

• Implement process control measures.
• Track short- and long-term costs in

relation to a budget.
• Continuously identify and mitigate

risks in a team environment with all
relevant stakeholders.
Since the quality of systems is gov-

erned largely by the processes used to
create and maintain them, improving the
processes used by both the acquirer and
the supplier will improve the quality of
systems. Again, improving the processes
of both the acquirer and the supplier is
critical. When both have mature and
capable processes, the probability of suc-
cess is highest.

When the acquirer’s processes are
mature and the supplier’s processes are
not, the acquirer can mentor the supplier,
but the outcome is not predictable. When
the supplier’s processes are mature, the
acquirer with immature processes often
encourages short cuts and interferes with
the supplier’s ability to meet requirements
thus adversely affecting quality, cost, and
schedule. Acquirers routinely ask contrac-

tors to cut systems engineering, quality
assurance, and even causal analysis and
continuous improvement activities
because they fail to see their immediate
value to the program.

Many DoD suppliers have a head start
on their government customers because
they are already using CMMI best prac-
tices. To improve the state of acquisition
practice, effective acquisition processes
must be defined, implemented, measured,
and evolved. The contribution of the
acquirer must also be more clearly visible
as part of program success.

National Defense
Authorization Act
The government has shown its desire to
improve the state of acquisition practice
in Section 804 of the National Defense
Authorization Act, released in December
2002 [3]. This section states, “Service/
departments shall establish programs to
improve the software acquisition
process.”

The requirements of such a program
include the following:
• A documented process for planning,

requirements development and man-
agement, project management and
oversight, and risk management.

• Metrics for performance measure-
ment and continual process improve-
ment.

• A process to ensure adherence to
established process and requirements
related to software acquisition.
The act also requires that the Office of

System Architecture and Investment
Analysis (Communications, Command,
Control, and Intelligence) and the
Undersecretary of Defense AT&L sup-
port government programs by the follow-
ing:

• Prescribe uniform guidance for imple-
mentation across the DoD.

• Assist the services and departments
by the following:
• Ensuring that source selection cri-

teria includes past performance
and the maturity of the software
products offered by potential
sources.

• Serving as a clearinghouse for best
practices in software development
and acquisition in both the public
and private sectors.

This summer, a team of acquisition
professionals who are knowledgeable
about both CMMI and CMMI-AM has
begun a series of pilot appraisals using
the module within select DoD programs.
In these pilots, participants evaluate the
effectiveness of the module in helping
program offices establish process
improvement programs compliant with
Section 804 requirements. This piloting
activity is sponsored by Dave Castellano,
deputy director, Systems Engineering,
Defense Systems, OSD for AT&L.

Managing Acquisition Risk
By improving acquisition processes,
acquirers can take on higher-risk pro-
grams because they can balance program
risk with their improved ability to manage
that risk (see Figure 1). The CMMI best
practices provide guidance for improving
an organization’s processes and its ability
to manage the development, acquisition,
and maintenance of products and prod-
uct components. The CMMI model and
the CMMI-AM assemble best practices
into a structure that helps organizations
examine the effectiveness of their
processes, establish priorities for their
improvement, and implement needed
improvement.

Low Medium High

Program Risk

H
ea

lt
h

y
A

d
eq

u
at

e
In

ef
fe

ct
iv

e

Somewhat
Predictable

Unpredictable
Results

Highly
Predictable

A
cq

u
is

it
io

n
 P

ra
ct

ic
es

Figure 1: Notional Depiction of a Program’s Ability to Balance Risk With Healthy Acquisition
Practices

CMMI
CMMI best practices apply to organiza-
tions that manage project teams who
develop systems (i.e., products and ser-
vices), not just to the software or systems
engineering disciplines within a project
team. As illustrated in Figure 2, the
CMMI model that includes practices from
systems engineering (SE), software engi-
neering (SW), integrated product and
process development (IPPD), and suppli-
er sourcing (SS), when used with a con-
tinuous representation, organizes the
practices into four categories: process
management, project management, engi-
neering, and support. This CMMI model
was chosen to be used with CMMI-AM
because it contains the largest number of
best practices that are relevant to the
acquisition organization.

Acquisition Best Practices
The CMMI-AM focuses on effective
acquisition activities and practices that are
implemented by first-level acquisition
projects such as a Systems Program
Office. Acquisition practices are drawn
and summarized from the following
sources of best practices:

• CMMI models.
• The Software Acquisition Capability

Maturity Model.
• The Federal Aviation Administration

Integrated Capability Maturity Model.
• Section 804 of the National Defense

Authorization Act.
The CMMI-AM is designed to be used

with CMMI best practices as an acquisi-
tion lens for interpreting these practices
in acquisition environments. Figure 3
illustrates the structure of the module.

Comparing the Module to
the Model
If you compare Figures 2 and 3, you will
see the difference between CMMI-SE/
SW/IPPD/SS and CMMI-AM. Notice
that the module does not include the
Process Management process areas.

In CMMI-AM Project Management
process areas, Supplier Agreement Manage-
ment, Integrated Supplier Management, and
Quantitative Project Management are not
transferred from the model. The module
adds Solicitation and Contract Monitoring as a
new process area.

In the Engineering process areas of
CMMI-AM, Technical Solution and Product

Integration are not transferred from the
model.

In the Support process areas of
CMMI-AM, Causal Analysis and Resolution
is not transferred from the model. The
module adds Transition to Operations and
Support as a new process area.

To provide a flavor of CMMI-AM’s
content, the following includes a best
practices’ example from one process area
within each process area category covered
in CMMI-AM.

Project Management
The Project Management process areas
included in CMMI-AM are Project Plan-
ning, Project Monitoring and Control,
Integrated Project Management, Risk
Management, Integrated Teaming, and
Solicitation and Contract Monitoring.

A few of the best practices included in
the Solicitation and Contract Monitoring
process area include the following:
• Designate a selection official.
• Establish cost and schedule estimates.
• Evaluate proposals.

Engineering
The Engineering process areas included
in CMMI-AM are Requirements Man-
agement, Requirements Development,
Verification, and Validation.

A few of the best practices included in
the Requirements Development process
area include the following:
• Establish product and product-com-

ponent requirements.
• Establish operational concepts and

scenarios.
• Analyze requirements to achieve bal-

ance.

Support
The Support process areas included in
CMMI-AM are Configuration Manage-
ment, Process and Product Quality
Assurance, Measurement and Analysis,
Decision Analysis and Resolution, Trans-
ition to Operations and Support, and
Organizational Environment for
Integration.

A few of the best practices included in
the Transition to Operations and Support
process area include the following:
• Establish product transition plans.
• Identify support responsibility.
• Evaluate product readiness.

IPPD Concepts
The fundamental concepts of IPPD
incorporated in CMMI-AM include the
effective use of cross-functional or multi-
disciplinary teams, leadership commit-
ment, appropriate allocation and delega-

Systems Approach

10 CROSSTALK The Journal of Defense Software Engineering August 2004

-CMMI SE/SW/IPPD/SS

CMMI

Engineering SupportProcess
Management

Project
Management

• Organizational Process Focus
• Organizational Process

Definition
• Organizational Training
• Organizational Process

Performance
• Organizational Innovation

and Deployment

• Project Planning
• Project Monitoring and

Control
• Supplier Agreement Management
• Integrated Project Management
• Integrated Supplier Management
• Risk Management
• Quantitative Project Management
• Integrated Teaming

• Requirements Management
• Requirements Development
• Technical Solution
• Product Integration
• Verification
• Validation

• Configuration Management
• Process and Product

Quality Assurance
• Measurement and

Analysis
• Decision Analysis and
Resolution

• Causal Analysis and
Resolution

• Organizational
Environment for Integration

CMMI Acquisition Module

Engineering Support
Project

Management

• Project Planning
• Project Monitoring and

Control
• Integrated Project

Management
• Risk Management
• Integrated Teaming
• Solicitation and Contract

Monitoring

• Requirements Management
• Requirements Development
• Verification
• Validation

• Configuration Management
• Process and Product Quality

Assurance
• Measurement and Analysis
• Decision Analysis and

Resolution
• Transition to Operations and

Support
• Organizational Environment

for Integration

Figure 2: Structure of CMMI-SE/SW/IPPD/SS Model With a Continuous Representation

Low Medium High

Program Risk

H
ea

lt
h

y
A

d
eq

u
at

e
In

ef
fe

ct
iv

e

Somewhat
Predictable

Unpredictable
Results

Highly
Predictable

A
cq

u
is

it
io

n
 P

ra
ct

ic
es

-CMMI SE/SW/IPPD/SS

CMMI

Engineering SupportProcess
Management

Project
Management

• Organizational Process Focus
• Organizational Process

Definition
• Organizational Training
• Organizational Process

Performance
• Organizational Innovation

and Deployment

• Project Planning
• Project Monitoring and

Control
• Supplier Agreement Management
• Integrated Project Management
• Integrated Supplier Management
• Risk Management
• Quantitative Project Management
• Integrated Teaming

• Requirements Management
• Requirements Development
• Technical Solution
• Product Integration
• Verification
• Validation

• Configuration Management
• Process and Product

Quality Assurance
• Measurement and

Analysis
• Decision Analysis and
Resolution

• Causal Analysis and
Resolution

• Organizational
Environment for Integration

CMMI Acquisition Module

Engineering Support
Project

Management

• Project Planning
• Project Monitoring and

Control
• Integrated Project

Management
• Risk Management
• Integrated Teaming
• Solicitation and Contract

Monitoring

• Requirements Management
• Requirements Development
• Verification
• Validation

• Configuration Management
• Process and Product Quality

Assurance
• Measurement and Analysis
• Decision Analysis and

Resolution
• Transition to Operations and

Support
• Organizational Environment

for Integration

Figure 3: The Structure of CMMI-AM

Applying CMMI to Systems Acquisition

August 2004 www.stsc.hill.af.mil 11

tion of decision making, and organiza-
tional structure that rewards team perfor-
mance.

Generic Practices
Generic practices ensure that the
improvements you make to your process-
es are effective, repeatable, and lasting.
These practices must be considered when
implementing the specific practices of the
process areas.

Implementing CMMI-Based
Process Improvement
To improve acquisition practices, practi-
tioners, projects, and organizations must
move from ad hoc acquisition practices to
explicit acquisition practices. Using
CMMI-AM and the Initiating, Diagno-
sing, Establishing, Acting, and Learning
(IDEALSM) model, a simple improvement
process, organizations can do just that
(see Figure 4).

Using the IDEAL model and CMMI-
AM, a process improvement team would
follow each phase in the loop to improve
its organization’s acquisition practices.
The IDEAL model is available at
<www.sei.cmu.edu/ideal/ideal.html>.

Where to Go From Here
The CMMI-AM has been going through
piloting, and an updated module will be
available for use in early Fall 2004.
However, there is nothing stopping you
from using CMMI-AM now.

To get started, learn as much as you
can about CMMI, CMMI-AM, and your
organization’s acquisition practices. To
learn more about CMMI models and
CMMI-AM, see <www.sei.cmu.edu/
cmmi/models/models.html>. To learn
more about CMMI, see <www.sei.cmu.
edu/cmmi/>.

Training is available to help you get
started, including the Introduction to
CMMI training course and CMMI-AM
tutorial. There are two types of
Introduction to CMMI training available:
staged and continuous representations,
allowing you to choose the course that is
the best fit for your company. Regardless
of which course you may take, your
choice does not limit your ability to use
either or both representations. See <www.
sei.cmu.edu/cmmi/training/course
-decision.html> for information about
selecting an Introduction to CMMI
course.

Introduction to CMMI training is
available from the SEI or from members
of the SEI Partner Network. For more

information, refer to <www.sei.cmu.
edu/collaborating/partners/partners
-tech.html#ICMMI>.

The CMMI-AM tutorial is a one-day
introduction to the module designed for
acquisition professionals who have
attended Introduction to CMMI training

and are interested in applying CMMI to
acquisition. If you are interested in the
CMMI-AM tutorial, contact SEI Cus-
tomer Relations at <customer-relations
@sei.cmu.edu> for more information.

Ensure that your process improve-
ment program has senior management
sponsorship and middle management
support. Such sponsorship and support is
critical to making the program’s success
possible.

Determine the scope of your initial

process improvement program. You can
select one or more departments, divisions,
programs, or projects. Or, you can select
the entire organization. However, it is
wise to begin with a smaller scope.

Map your organization’s processes to
CMMI-AM and CMMI model. It is
unlikely that the best practices will map
one-to-one with your organization’s
processes. However, by mapping the
existing processes to the practices in
CMMI-AM, you will identify where there
are gaps. Consider using the IDEAL
model to help you implement your
process improvement program.

You can conduct an informal gap
analysis using CMMI-AM or, if you want
a maturity level or capability level rating,
you can conduct a benchmarking
SCAMPI Class A appraisal using CMMI-
SE/SW/IPPD/SS Version 1.1 Contin-
uous with CMMI-AM as additional infor-
mative material. If you choose to conduct
a SCAMPI Class A appraisal, it will
require an SEI-authorized SCAMPI Lead
Appraiser. If you do not already have an
authorized lead appraiser, there is a list of
all currently authorized lead appraisers at
<www.sei .cmu.edu/col laborat ing/
partners/partners-tech.html#SCAMPI>.
These lead appraisers also have the
knowledge to conduct more informal gap
analyses using CMMI-AM.

After your gap analysis or appraisal,
you will know which processes enable the
most useful improvement and the results
will guide your process improvement
efforts.

Use CMMI-AM as a place to start
improving your acquisition processes.
You will benefit from the previous expe-
rience of successful organizations andSM IDEAL is a service mark of Carnegie Mellon University.

Set
Context

Build
Sponsorship

Charter
Infrastructure

Characterize
Current and
Desired States

Develop
Recommendations

Set
Priorities Develop

Approach

Plan
Actions

Create
Solution

Pilot/Test
Solution

Refine
Solution

Implement
Solution

Analyze
and
Validate

Propose
Future
Actions

Stimulus
for Change

Initiating

Diagnosing

Establishing

Acting

LearningThe
IDEAL
Model

Figure 4: The IDEAL Model

“Since the quality of
systems is governed

largely by the processes
used to create and

maintain them,
improving the processes

used by both the
acquirer and the

supplier will improve
the quality of systems.”

Systems Approach

12 CROSSTALK The Journal of Defense Software Engineering August 2004

develop a language that is common
among organizations improving their
processes – organizations that include the
suppliers you work with every day.◆

References
1. Goldenson, Dennis, and Diane

Gibson. Demonstrating the Impact
and Benefits of CMMI: An Update
and Preliminary Results. CMU/SEI-
2003-SR-009. Pittsburgh, PA: Soft-
ware Engineering Institute, 2003
<www.sei.cmu.edu/publications/ doc-
uments/03.reports/03sr009. html>.

2. Bernard, Thomas, Brian Gallagher,
Roger Bate, and Hal Wilson. CMMI-
AM. CMU/SEI-2004-TR-001. Pitts-
burgh, PA: Software Engineering
Institute, 2004 <www.sei.cmu.edu/
publications/documents/04.reports/
04tr001.html>.

3. U.S. Congress. “National Defense
Authorization Act for Fiscal Year
2002.” Calendar No. 163, 107th
Congress, 1st Session, S. 1438. Wash-
ington, D.C., 2001 <www.theorator.
com/bills107/s1438.html>.

Additional Reading
1. CMMI Product Development Team.

CMMI for Systems Engineering, Soft-
ware Engineering, Integrated Product
and Process Development, and Sup-
plier Sourcing Version 1.1 Continuous
Representation. CMU/SEI-2002-TR-
012. Pittsburgh, PA: Software Engi-
neering Institute, Nov. 2000 <www.
sei.cmu.edu/publications/documents
/02.reports/02tr011.html>.

About the Authors

Sandy Shrum is a senior
writer/editor at the
Software Engineering
Institute (SEISM). Since
1998, she has been a
member of the Capabil-

ity Maturity Model® Integration
(CMMI®) Product Team in roles such as
author, reviewer, editor, and quality
assurance process owner. Shrum also
serves on the CMMI configuration con-
trol board and is the CMMI communi-
cations manager. She is co-author of the
book “CMMI: Guidelines for Process
Integration and Product Improvement.”
Before joining the SEI, Shrum wrote
documentation for mainframe- and
Unix-based products for Legent
Corporation. She has more than 16 years
experience as a technical writer in the
software industry. Shrum has a Master of
Science in professional writing from
Carnegie Mellon University and a
Bachelor of Science in business admin-
istration from Gannon University.

Software Engineering Institute
4500 Fifth AVE
Pittsburgh, PA 15213-3890
Phone: (412) 268-6503
Fax: (412) 268-5758
E-mail: sshrum@sei.cmu.edu

Brian P. Gallagher is
the director of the
Software Engineering
Institute’s (SEISM) Acq-
uisition Support Pro-
gram. He is responsible

for building teams from across the SEI’s
disciplines to support the needs of the
Department of Defense and other gov-
ernment agency acquisition programs.

Software Engineering Institute
4500 Fifth AVE
Pittsburgh, PA 15213-3890
Phone: (412) 268-7157
Fax: (412) 268-5758
E-mail: bg@sei.cmu.edu

Open Systems/Open Source Software
January 2005

Submission Deadline: August 16, 2004

Risk Management
February 2005

Submission Deadline: September 20, 2004

Personal Computing
March 2005

Submission Deadline: October 18, 2004

Please follow the Author Guidelines for CrossTalk, available on the
rnet at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on all
ware-related topics at any time, along with Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could
be useful to others, CrossTalk can get the word out. We are
specifically looking for articles on software-related topics to
supplement upcoming theme issues. Below is the submittal schedule
for three areas of emphasis we are looking for:

August 2004 www.stsc.hill.af.mil 13

Software reliability engineering (SRE) is
a discipline that can help organizations

improve the reliability of products and
processes. The American Institute of
Aeronautics and Astronautics (AIAA)
defines SRE as,

The application of statistical tech-
niques to data collected during sys-
tem development and operation to
specify, predict, estimate, and
assess the reliability of software-
based systems. [1]

This recommended practice [1] is a
composite of models, tools, and databas-
es, and describes the what and how details of
SRE, predicting the reliability of software.
It provides information necessary for the
application of software reliability mea-
surement to a project, lays a foundation for
building consistent methods, and estab-
lishes the basic principles for collecting the
performance data needed to assess soft-
ware reliability. The document describes
how any user may participate in ongoing,
software reliability assessments or conduct
site- or package-specific studies.

It is important for an organization to
have a disciplined process if it is to pro-
duce highly reliable software. This article
describes the AIAA’s recommended prac-
tice and how it is enhanced to include the
risk to reliability due to requirements
changes. A requirements change may
induce ambiguity and uncertainty in the
development process that cause errors in
implementing the changes. Subsequently,
these errors propagate through later phas-
es of development and maintenance, pos-
sibly resulting in significant risks associat-
ed with implementing the requirements.
For example, reliability risk (i.e., risk of
faults and failures induced by changes in
requirements) may be incurred by defi-
ciencies in the process (e.g., lack of preci-
sion in requirements).

A revision of the “AIAA
Recommended Practice for Software
Reliability (R-013-1992),” sponsored by

AIAA and the Institute of Electrical and
Electronics Engineers, will address relia-
bility prediction through all phases of the
software life cycle since identifying errors
early reduces the cost of error correction.
It will also examine recent advances in
modeling and predicting the reliability of
networks and distributed systems. At this
time, it is not known when this revision
will be released. The following sections
taken from [1] provide an overview of the
planned revisions.

Purpose
The “AIAA Recommended Practice for
Software Reliability (R-013-1992)” is used
from the start of the requirements phase
through the operational-use phase of the
software life cycle. It also provides input
to the planning process for reliability man-
agement.

The practice describes activities and
qualities of a software reliability estima-
tion and prediction program. It details a
framework that permits risk assessment
and predicting software failure rates, rec-
ommends a set of models for software
reliability estimation and prediction, and
specifies mandatory as well as recom-
mended data collection requirements.

The AIAA practice provides a founda-
tion for practitioners and researchers. It
supports the need of software practition-
ers who are confronted with inconsistent
methods and varying terminology for reli-
ability estimation and prediction, as well as
a plethora of models and data collection
methods. It supports researchers by defin-
ing common terms, by identifying criteria
for model comparison, and by identifying
open research problems in the field.

Intended Audience and
Benefits
Practitioners (e.g., software developers,
software acquisition personnel, technical
managers, and quality and reliability per-
sonnel) and researchers can use the AIAA
practice. Its purpose is to provide a com-
mon baseline for discussion and to define

a procedure for assessing software reliabil-
ity. It is assumed that users of this recom-
mended practice have a basic understand-
ing of the software life cycle and statistical
concepts.

This recommended practice is intend-
ed to support designing, developing, and
testing software. This includes software
quality and software reliability activities. It
also serves as a reference for research on
the subject of software reliability. It is
applicable to in-house, commercial, and
third-party software projects and has been
developed to support a systems reliability
approach. As illustrated in Figure 1, the
AIAA practice considers hardware and,
ultimately, systems characteristics.

SRE Applications
Industry practitioners have successfully
applied SRE to software projects to do the
following [2, 3, 4, 5, 6]:
• Indicate whether a specific, previously

applied software process is likely to
produce code that satisfies a given
software reliability requirement.

• Determine the size and complexity of
a software maintenance effort by pre-
dicting the software failure rate during
the operational phase.

• Provide metrics for process improve-
ment evaluation.

• Assist software safety certification.
• Determine when to release a software

system or to stop testing it.
• Predict the occurrence of the next fail-

ure for a software system.
• Identify elements in software systems

that are leading candidates for redesign
to improve reliability.

• Estimate the reliability of a software
system in operation using this informa-
tion to control change to the system.

A Recommended Practice for Software Reliability

This article reports on the revisions to the American Institute of Aeronautics and Astronautics’ (AIAA) publication
“AIAA Recommended Practice for Software Reliability (R-013-1992)” [1]. Sponsored by the AIAA and the Institute
of Electrical and Electronics Engineers, the revision addresses reliability prediction through all phases of the software life
cycle, since identifying errors early reduces the cost of error correction. Furthermore, there have been advances in modeling
and predicting the reliability of networks and distributed systems that are included in the revision.

Dr. Norman F. Schneidewind
Naval Postgraduate School

Figure 1. System Reliability Characteristics

Figure 1: System Reliability Characteristics

The AIAA practice enables software
practitioners to make similar determina-
tions for their particular software systems
as needed. Special attention should be
given in applying this practice to avoid
violating the assumptions inherent in
modeling techniques. Data acquisition
procedures and model selection criteria
are provided and discussed to assist in
these efforts.

Relationship to Hardware and
System Reliability
Hardware Reliability
There are at least two significant differ-
ences between software reliability and
hardware reliability. First, software does
not fatigue, wear out, or burn out. Second,
due to the accessibility of software instruc-
tions within computer memories, any line
of code can contain a fault that, upon exe-
cution, is capable of producing a failure. A
software reliability model specifies the
general form of the dependence of the
failure process on the principal factors that
affect it: fault introduction, fault removal,
and the operational environment.

The failure rate (failures per unit time)
of a software system is generally decreas-
ing due to fault identification and removal.
At a particular time, it is possible to
observe a history of the failure rate of the
software. Software reliability modeling is
done to estimate the form of the curve of

the failure rate by statistically estimating
the parameters associated with the selected
model. The purpose of this measure is
twofold: (1) to estimate the extra execution
time required to meet a specified reliability
objective, and (2) to identify the expected
reliability of the software when the prod-
uct is released. This procedure is impor-
tant for cost estimation, resource planning,
schedule validation, and quality prediction
for software maintenance management.

The creation of software and hardware
products is the same in many ways and can
be similarly managed throughout design
and development. However, while the
management techniques may be similar,
there are genuine differences between
hardware and software. The following are
examples:
• Changes to hardware require a series of

important and time-consuming steps:
capital equipment acquisition, compo-
nent procurement, fabrication, assem-
bly, inspection, test, and documenta-
tion. Changing software is frequently
more feasible (although effects of the
changes are not always clear) and
oftentimes requires only code, testing,
and documentation.

• Software has no physical existence. It
includes data as well as logic. Any item
in a file can be a source of failure.

• Software does not wear out.
Furthermore, failures attributable to

software faults come without advance
warning and often provide no indica-
tion they have occurred. Hardware, on
the other hand, often provides a period
of graceful degradation.

• Software may be more complex than
hardware, although exact software
copies can be produced, whereas man-
ufacturing limitations affect hardware.

• Repair generally restores hardware to
its previous state. Correction of a soft-
ware fault always changes the software
to a new state.

• Redundancy and fault tolerance for
hardware are common practice. These
concepts are only beginning to be prac-
ticed in software.

• Software developments have tradition-
ally made little use of existing compo-
nents. Hardware is manufactured with
standard parts.

• Hardware reliability is expressed in wall
clock time. Software reliability is
expressed in execution time.

• A high rate of software change can be
detrimental to software reliability.
Despite the above differences, hard-

ware and software reliability must be man-
aged as an integrated system attribute.
However, these differences must be
acknowledged and accommodated by the
techniques applied to each of these two
types of subsystems in reliability analyses.

System Reliability
When integrating software reliability with
the system it supports, the characterization
of the operational environment is impor-
tant. The operational environment has
three aspects: (1) system configuration, (2)
system evolution, and (3) system opera-
tional profile.

System configuration is the arrange-
ment of the system’s components.
Software-based systems are just that; they
cannot be pure but must include hardware
as well as software components.
Distributed systems are a type of system
configuration. The purpose of determin-
ing the system configuration is twofold:
• To determine how to allocate system

reliability to component reliabilities.
• To determine how to combine compo-

nent reliabilities to establish system
reliability.
In modeling software reliability, it is

necessary to recognize that systems fre-
quently evolve as they are tested. That is,
new code or even new components are
added. Special techniques for dealing with
evolution are provided in [7].

The system’s operational profile char-
acterizes in quantitative fashion how the
software will be used. It lists all operations

14 CROSSTALK The Journal of Defense Software Engineering August 2004

Systems Approach

Terminology [1]

Software Quality: (1) The totality of features and characteristics of a software prod-
uct that bear on its ability to satisfy given needs; for example, to conform to specifica-
tions. (2) The degree to which software possesses a desired combination of attribut-
es. (3) The degree to which a customer or user perceives that software meets his or
her composite expectations. (4) The composite characteristics of software that deter-
mine the degree to which the software in use will meet the customer’s expectations.

Software Reliability: (1) The probability that software will not cause the failure of a
system for a specified time under specified conditions. The probability is a function of
the inputs to and use of the system, as well as a function of the existence of faults in
the software. The inputs to the system determine whether existing faults, if any, are
encountered. (2) The ability of a program to perform a required function under stated
conditions for a stated period of time.

Software Reliability Engineering: The application of statistical techniques to data
collected during system development and operation to specify, predict, estimate, and
assess the reliability of software-based systems.

Software Reliability Estimation: The application of statistical techniques to observed
failure data collected during system testing and operation to assess the reliability of the
software.

Software Reliability Model: A mathematical expression that specifies the general
form of the software failure process as a function of factors such as fault introduction,
fault removal, and the operational environment.

Software Reliability Prediction: A forecast of the reliability of the software based on
parameters associated with the software product and its development environment.

A Recommended Practice for Software Reliability

August 2004 www.stsc.hill.af.mil 15

realized by the software and the probabili-
ty of occurrence and criticality of each
operation.

A system may have multiple opera-
tional profiles or operating modes, which
usually represent difference in function
associated with significant environmental
variables. For example, a space vehicle may
have ascent, on-orbit, and descent operat-
ing modes. Operating modes may be relat-
ed to time, installation location, customer,
or market segment. Reliability can be
tracked separately for different modes if
they are significant. The only limitation is
the extra data collection and cost involved.

Software Reliability Modeling
Software is a complex intellectual product.
Inevitably, some errors are made during
requirements formulation as well as during
designing, coding, and testing the product.
The development process for high-quality
software includes measures that are
intended to discover and correct faults
resulting from these errors, including
reviews, audits, screening by language-
dependent tools, and several levels of test.
Managing these errors involves describing,
classifying, and modeling the effects of the
remaining faults in the delivered product
and thereby helping to reduce their num-
ber and criticality.

Dealing with faults costs money and
impacts development schedules and sys-
tem performance (through increased use
of computer resources such as memory,
CPU time, and peripherals requirements).
There can be too much as well as too little
effort spent dealing with faults. Thus the
system engineer (along with management)
can use reliability estimation and predic-
tion to understand the current system sta-
tus and make trade-off decisions.

Prediction Model Validity
In prediction models, validity depends on
the availability of operational or test failure
data [4]. The premise of most estimation
models is that the failure rate is a direct
function of the number of faults in the
program, and that the failure rate will be
reduced (reliability will be increased) as
faults are detected and eliminated during
test or operations. This premise is reason-
able for the typical test environment, and it
has been shown to give credible results
when correctly applied [3, 5, 6]. However,
the results of prediction models will be
adversely affected by the following:
• Change in failure criteria.
• Significant changes in the code under

test.
• Significant changes in the computing

environment.

All of these factors will require a new
set of reliability model parameters to be
computed. Until these can be established,
the effectiveness of the model will be
impaired. Estimation of new parameters
depends on the measurement of several
execution time intervals between failures.

Major changes can occur with respect
to several of the above factors when soft-
ware becomes operational. In the opera-
tional environment, the failure rate is a
function of the fault content of the pro-
gram, of the variability of input and com-
puter states, and of software maintenance
policies. The latter two factors are under
management control and are frequently
utilized to achieve an expected or desired
range of values for the failure rate or the
downtime due to software causes.
Examples of management action that
decrease the failure rate include avoidance
of data combinations that have caused
previous failures, and avoidance of high
workloads.

Software in the operational environ-
ment may not exhibit the reduction in fail-
ure rate with execution time that is an
implicit assumption in most estimation
models. Knowledge of the management
policies is therefore essential in selecting a
software reliability estimation procedure
for the operational environment. Thus, the
estimation of operational reliability from
data obtained during test may not hold
true during operations.

Life-Cycle Approach
A key part of the revision will be the life-
cycle approach to SRE. The following
example illustrates the life-cycle approach
to reliability risk management of the
revised recommended practice: This
approach has been demonstrated on the
space shuttle avionics software [2, 3].

AIAA Practice Applied to the Space
Shuttle
The space shuttle avionics software repre-
sents a successful integration of many of
the computer industry's most advanced
software engineering practices and
approaches. Since its beginning in the late
1970s, this software development and
maintenance project has evolved one of
the world’s most mature software process-
es applying the principles of the highest
levels of the Software Engineering
Institute's Capability Maturity Model®,
trusted software methodology, ISO 9001
standards, and [1].

This software process, considered a best
practice by many software industry organi-
zations, includes state-of-the-practice soft-
ware reliability engineering methodologies.

Life-critical shuttle avionics software pro-
duced by this process is recognized to be
among the highest quality and highest reli-
ability software in operation in the world.
This case study explores the successful use
of extremely detailed fault and failure his-
tory, throughout the software life cycle, in
the application of SRE techniques to gain
insight into the flight worthiness of the
software and to suggest where to look for
remaining defects. The role of software
reliability models and failure prediction
techniques is examined and explained to
apply these approaches on other software
projects. One of the most important
aspects of such an approach is addressed:
how to use and interpret the results of the appli-
cation of such techniques.

Interpretation of Software Reliability
Predictions
Successful use of statistical modeling in
predicting the reliability of a software sys-
tem requires a thorough understanding of
precisely how the resulting predictions are
to be interpreted and applied [5]. The pri-
mary avionics software subsystem (PASS)
(430,000 lines of code) is frequently mod-
ified, at the request of NASA, to add or
change capabilities using a constantly
improving process. Each of these succes-
sive PASS versions constitutes an upgrade
to the preceding software version. Each
new version of the PASS (designated as an
operational increment) contains software
code that has been carried forward from
each of the previous versions (previous-ver-
sion subset) as well as new code generated
for that new version (new-version subset). By
applying a reliability model independently
to the code subsets according to the fol-
lowing rules, you can obtain satisfactory
composite predictions for the total ver-
sion:
1. All new code developed for a particular

version does use a nearly constant
process.

2. All code introduced for the first time
for a particular version does, as an
aggregate, build up the same shelf life
and operational execution history.

3. Unless subsequently changed for a
newer capability, thereby becoming
new code for a later version, all new code
is only changed thereafter to correct
faults.
It is essential to recognize that this

approach requires a very accurate code
change-history so that every failure can be
uniquely attributed to the version in which
the defective line(s) of code was first intro-
duced. In this way, it is possible to build a
separate failure history for the new code in
each release. To apply SRE to your soft-

ware system, you should consider breaking
your systems and processes down into
smaller elements to which a reliability
model can be more accurately applied.
Using this approach, the Naval
Postgraduate School has been successful in
applying SRE to predict the reliability of
the PASS for NASA.

Estimating Execution Time
At the Naval Postgraduate School, we esti-
mate execution time of segments of the
PASS software by analyzing records of
test cases in digital simulations of opera-
tional flight scenarios as well as records of
actual use in shuttle operations. Test case
executions are only counted as operational
execution time for previous-version subsets
of the version being tested if the simula-
tion fidelity very closely matches actual
operational conditions.

Prerelease test execution time for the
new code actually being tested in a version
is never counted as operational execution
time. We use the failure history and oper-
ational execution time history for the new
code subset of each version to generate an
individual reliability prediction for that
new code in each version by separate
applications of the reliability model.

This approach places every line of
code in the total PASS into one of the
subsets of newly developed code, whether
it is new for the original version or any
subsequent version. We then represent the
total reliability of the entire software sys-
tem as that of a composite system of sep-
arate components (new code subsets), each
having an individual execution history and
reliability, connected in series. Lockheed
Martin is currently using this approach to
apply the Schneidewind [8, 9] model as a
means of predicting a conservative lower
bound for the PASS reliability.

Verification and Validation
Software reliability measurement and pre-
diction are useful approaches to verify and
validate software. Measurement refers to
collecting and analyzing data about the
observed reliability of software, for exam-
ple the occurrence of failures during test.
Prediction refers to using a model to fore-
cast future software reliability, for example
failure rate during operation. Measure-
ment also provides the failure data that is
used to estimate the parameters of relia-
bility models (i.e., make the best fit of the
model to the observed failure data).

Once the parameters have been esti-
mated, the model is used to predict the
software’s future reliability. Verification
ensures that the software product, as it
exists in a given project phase, satisfies the

conditions imposed in the preceding
phase (e.g., reliability measurements of
safety-critical software components ob-
tained during test conform to reliability
specifications made during design) [5].
Validation ensures that the software prod-
uct, as it exists in a given project phase,
which could be the end of the project, sat-
isfies requirements (e.g., software reliabili-
ty predictions obtained during test corre-
spond to the reliability specified in the
requirements) [5].

Reliability Measurements and
Predictions
There are a number of reliability measure-
ments and predictions that can be made to
verify and validate the software. Among
these are remaining failures, maximum failures,
total test time required to attain a given fraction
of remaining failures, and time to next failure.
These have been shown to be useful mea-
surements and predictions for: (1) provid-
ing confidence that the software has
achieved reliability goals, (2) rationalizing
how long to test a software component
(e.g., testing sufficiently to verify that the
measured reliability conforms to design
specifications), and (3) analyzing the risk
of not achieving remaining failure and time to
next failure goals [6].

Having predictions of the extent to
which the software is not fault-free
(remaining failures) and whether a failure
is likely to occur during a mission (time to
next failure) provides criteria for assessing
the risk of deploying the software.
Furthermore, the fraction of remaining
failures can be used as both an operational
quality goal in predicting total test time
requirements and, conversely, as an indica-
tor of operational quality as a function of
total test time expended [6].

Risk Assessment
Safety risk pertains to executing the soft-
ware of a safety-critical system where
there is the chance of injury (e.g., astro-
naut injury or fatality), damage (e.g.,
destruction of the shuttle), or loss (e.g.,
loss of the mission) if a serious software
failure occurs during a mission. In the case
of the shuttle PASS, where the occurrence
of even trivial failures is extremely rare,
the fraction of those failures that pose any
impact to safety or mission success is too
small to be statistically significant.

As a result, for this approach to be fea-
sible, all failures (of any severity) over the
entire 20-year life of the project have been
included in the failure history database for
this analysis. Therefore, the risk criterion
metrics to be discussed for the shuttle
quantify the degree of risk associated with

the occurrence of any software failure, no
matter how insignificant it may be. The
approach used can be applied to safety
risk where sufficient data exist.

Two criteria for software reliability lev-
els will be defined, then these criteria will
be applied to the risk analysis of safety-
critical software using the PASS as an
example. In the case of the shuttle exam-
ple, the risk represents the degree to
which the occurrence of failures does not
meet required reliability levels, regardless
of how insignificant the failures may be.
Next, a variety of prediction equations
that are used in reliability prediction and
risk analysis have been defined and includ-
ed in the document; included is the rela-
tionship between time to next failure and
reduction in remaining failures. Then it is
shown how the prediction equations can
be used to integrate testing with reliability
and quality. An example is shown of how
the risk analysis and reliability predictions
can be used to make decisions about
whether the software is ready to deploy;
this approach could be used to determine
whether a software system is safe to deploy.

Criteria for Reliability
If the reliability goal is the reduction of
failures of a specified severity to an
acceptable level of risk [10], then for soft-
ware to be ready to deploy, after having
been tested for total time (tt), it must sat-
isfy the following criteria:

Predicted remaining failures

r (t t) <rc (1)

where,

rc is a specified critical value, and

Predicted time to next failure

TF (t t)>t m (2)

where,

t m is mission duration

The total time (tt) could represent a
safe/unsafe criterion, or the time to
remove all faults regardless of severity (as
used in the shuttle example).

For systems that are tested and operat-
ed continuously like the shuttle, tt , TF (tt),
and tm are measured in execution time.
Note that, as with any methodology for
assuring software reliability, there is no
guarantee that the expected level will be
achieved. Rather, with these criteria, the
objective is to reduce the risk of deploying

Systems Approach

16 CROSSTALK The Journal of Defense Software Engineering August 2004

the software to a desired level.

Summary
The existing AIAA practice and planned
revisions have been described. The princi-
ples of SRE, as applied to the revision
have been reviewed. A life-cycle approach
to SRE in the revision has been empha-
sized. The revision is expected to be an
important life-cycle software reliability
process document to achieve the follow-
ing objectives:
• Provide high reliability in Department

of Defense (DoD) and aerospace safe-
ty and mission-critical systems.

• Provide a rational basis for specifying
software reliability requirements in
DoD acquisitions.

• Improve the management of reliability
risk.◆

References
1. American Institute of Aeronautics and

Astronautics. AIAA Recommended
Practice for Software Reliability (R-
013-1992). ISBN: 1563470241.
Reston, VA: AIAA, 1992.

2. Billings, C., et al. “Journey to a Mature
Software Process.” IBM Systems
Journal 33.1 (1994): 46-61.

3. Keller, Ted, and N.F. Schneidewind.
“Successful Application of Software
Reliability Engineering for the NASA
Space Shuttle.” Software Reliability
Engineering Case Studies. Inter-
national Symposium on Software
Reliability Engineering, Albuquerque,
N.M., Nov. 1997: 71-82.

4. Musa, J., et al. Software Reliability:
Measurement, Prediction, Application.
New York: McGraw-Hill, 1987.

5. Schneidewind, N.F., and T. Keller.
“Application of Reliability Models to
the Space Shuttle.” IEEE Software 9.4
(July 1992): 28-33.

6. Schneidewind, N.F. “Reliability
Modeling for Safety-Critical Software.”
IEEE Transactions on Reliability 46.1
(Mar. 1997): 88-98.

7. Musa, J., et al. Software Reliability:
Measurement, Prediction, Application.
New York: McGraw-Hill, 1987: 166-176.

8. Schneidewind, N.F. “Report on
Results of Discriminant Analysis
Experiment.” 27th Annual NASA/
IEEE Software Engineering Work-
shop, Greenbelt, MD., 5 Dec. 2002.

9. Keller, Ted, N.F. Schneidewind, and
P.A. Thornton. Predictions for
Increasing Confidence in the
Reliability of the Space Shuttle Flight
Software. Proc. of the AIAA
Computing in Aerospace 10, San
Antonio, TX, 28 Mar. 1995: 1-8.

10. Schneidewind, N.F. Reliability and
Maintainability of Requirements
Changes. Proc. of the International
Conference on Software Maintenance,
Florence, Italy, 7-9 Nov. 2001: 127-136.

Additional Reading
1. Schneidewind, N.F. “Software

Reliability Model With Optimal
Selection of Failure Data.” IEEE
Transactions on Software Engineering
19.11 (Nov. 1993): 1095-1104.

2. Farr, W., and O. Smith. Statistical
Modeling and Estimation of
Reliability Functions for Software
(SMERFS) Users Guide. NAVSWC
TR-84-373, Revision 3. Naval Surface
Weapons Center, Revised Sept. 1993.

3. Lyu, M. Handbook of Software
Reliability Engineering. New York:
McGraw-Hill, 1995.

4. Musa, John D. Software Reliability
Engineering: More Reliable Software,
Faster Development and Testing. New
York: McGraw-Hill, 1999.

5. Schneidewind, N.F., and T. Keller.
“Application of Reliability Models to
the Space Shuttle.” IEEE Software 9.4
(Jul. 1992): 28-33.

6. Voas, J., and K. Miller. “Software
Testability: The New Verification.”
IEEE Software 12.3 (May 1995): 17-28.

August 2004 www.stsc.hill.af.mil 17

A Recommended Practice for Software Reliability

About the Author

Norman F. Schneidewind,
Ph.D., is professor of
Information Sciences in
the Department of In-
formation Sciences and
the Software Engineering

Group at the Naval Postgraduate
School. Schneidewind is a Fellow of the
Institute of Electrical and Electronics
Engineers (IEEE), elected in 1992 for
“contributions to software measurement
models in reliability and metrics, and for
leadership in advancing the field of soft-
ware maintenance.” In 2001, he received
the IEEE “Reliability Engineer of the
Year” award from the IEEE Reliability
Society.

Naval Postgraduate School
2822 Raccoon TRL
Pebble Beach, CA 93953
Phone: (831) 656-2719
(831) 372-2144
(831) 375-5450
Fax: (831) 372-0445
E-mail: nschneid@nps.navy.mil

Get Your Free Subscription

Fill out and send us this form .

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAY2003 c STRATEGIES AND TECH.

JUNE2003 c COMM. & MIL. APPS. MEET

JULY2003 c TOP 5 PROJECTS

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENT BASICS

MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

JULY2004 c TOP 5 PROJECTS

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

18 CROSSTALK The Journal of Defense Software Engineering August 2004

Despite an increased process focus
within Department of Defense

(DoD) programs over the past 15 years,
there is an increasing gap between pro-
gram cost, schedule, and technical perfor-
mance requirements and the capability of
program teams to realize them. In our
recent analysis of the results of 23 DoD
program assessments, process performance
shortfalls were identified as a primary fac-
tor underlying the inability of the pro-
grams to meet their acquisition objectives
and technical performance requirements.
Our analysis showed that nine out of
every 10 DoD programs that were
assessed exhibited process performance
shortfalls – program teams were unable to
specify, design, integrate, or execute
development processes that met the spe-
cific needs of their unique programs.

Given the increase in technical and man-
agement complexity of future DoD pro-
grams, and the trend toward massive sys-
tems of systems, our analysis projects that
this process-related performance gap will
widen.

Performance Assessment and
Analysis
Over the past four years, the Tri-Service
Assessment Initiative performed more
than 50 major DoD program assessments
that spanned the range of acquisition cat-
egory levels, platforms, domains, and ser-
vices. This was one of the largest inde-
pendent assessment programs ever con-
ducted that employed a well-defined and
consistent technical approach1.

The assessment approach encouraged
the assessment teams to drill down to the

causative issues across a very wide scope
of acquisition, programmatic, and techni-
cal areas, ranging from understanding the
general environmental constraints and the
customer’s agenda to specific contractual,
technical requirements, program and pro-
ject management, and training issues [1].
The assessment approach, with the results
delivered to and controlled only by the
program manager, also encouraged the
assessed program to be open and honest
with the assessment teams. This
approach, we believe, leads to a truer pic-
ture of the state of program performance
since the findings are less likely to be
gamed as in program acquisition oversight
audits.

The program performance issues
identified by the assessment teams were
collected and mapped into a systemic analy-
sis database that combined both the quan-
titative and subjective context data related
to the identified performance issues2. This
analysis approach permitted frequent,
relational (cause and effect), and integrat-
ed quantitative analysis of the program
issues. The results created were realistic,
persuasive, and auditable cross-program
information that can be effectively used
to identify, prioritize, and correct perfor-
mance shortfalls. Figure 1 provides a rela-
tive frequency of occurrence of the types
of issues that occurred most often in the
assessed programs, issues that materially
impacted overall program performance.

Among the recurring issues that were
identified, our systemic analysis indicated
that the software, systems engineering,
and management processes involved in
developing and deploying DoD systems
were primary contributors to poor pro-

Understanding the Roots
of Process Performance Failure

The U.S. Department of Defense (DoD) acquisition community seems to be perpetually searching for the answer to the ques-
tion, “Why isn’t program performance significantly improved given all of our investments in process improvement?” Over the past
several years, the Office of the Secretary of Defense, in partnership with each of the services, sponsored a performance-oriented
assessment effort called the Tri-Service Assessment Initiative that has provided some answers to this question. The initiative was
based on a flexible, expert assessment methodology consistently applied to a wide scope of DoD programs. The assessment process
allowed for valid cross-program quantification and evaluation of recurring or systemic program issues across the assessed program
base. As this systemic analysis capability matured, both DoD program and enterprise managers brought critical analysis ques-
tions to the systemic analysis team. One of the most significant of these centered on what the impact of process improvement
investments was across the DoD infrastructure. In this article, we will provide a summary of how the results of the DoD cross-
program systemic analysis help provide insight into the causes of the recurring process shortfalls in DoD programs.

Laura M. Dwinnell
Northrop Grumman IT

Software Engineering Technology

Dr. Robert Charette
ITABHI Corporation

Critical Program Performance Issues

26
43
43

48
52

61
70

74
83

87
87

91

Configuration Management
Decision Making

Interoperability
Program Schedule

Process Adherence
System Engineering

Product Quality - Rework
Program Planning

Product Testing
Requirements Management
Organizational Management

Process Capability

Id
en

ti
fi

ed
Is

su
e

A
re

as

Relative Occurrence (%)

Figure 1: Critical Program Performance Issues

John McGarry
U.S. Army Armament Research Development

and Engineering Center

August 2004 www.stsc.hill.af.mil 19

Understanding the Roots of Process Performance Failure

gram performance. Process performance
issues were of specific concern, and the
remainder of this article focuses on our
process-related findings.

Process-Related Systemic
Analysis Findings
The DoD programs are marked by their
complexity and dynamics. The technology
embedded in current DoD systems
changes both rapidly and repeatedly over
the program life cycle. To successfully
develop a DoD program requires a highly
coordinated team made up of dozens of
individual government and contractor
organizations that are typically dispersed
geographically. The glue that holds this
complex organization together are the
technical and management processes that
bring together the technology, resources,
knowledge, and skills to execute the pro-
gram plan. If the appropriate set of
processes is not performed, or worse, if
the individual processes are inadequate
for supporting the program’s specific
development or evolutionary needs, pro-
gram success is severely compromised.

A detailed analysis of the program
assessment data related to process perfor-
mance shortfalls led to categorizing the
causes of these shortfalls as being related
to either process adherence or process capability
(see the sidebar “Process Adherence
Versus Process Capability”). The types
and relationships of these causative
process issues are shown in Figure 2.

It rapidly became clear from our
analysis of the systemic issue data that the
delivery of adequate process performance on
any program was directly related both to
process adherence (i.e., the ability of an
organization to adequately define and
implement the technical and management
processes required for its programs) and
to process capability (i.e., the effectiveness
of the defined and implemented organi-
zational processes in meeting a specific
program’s technical and managerial
requirements).

On a positive note, our assessments
have not identified any individual pro-
grams that are missing the most rudimen-
tary technical or management processes,
as shown in the left column of Figure 2.
Fifteen years of process improvement
efforts have appeared to overcome this
one-time common problem. All of the
programs that were assessed were well
aware of the value of well-defined
processes, and of the need to map these
processes to the defined business needs
within their organizations. Further, most
of the organizations assessed were active-

ly involved in a structured process
improvement program of some kind.

Our analysis results showed that over
50 percent of the DoD programs that
have been assessed have issues involving
process adherence4. This means that the
assessments identified performance issues
directly related to a program team’s ability
to implement the technical and manage-
ment organizational process model or
standards that the organization had estab-
lished as being necessary to ensure pro-
gram success. The assessment results
showed that process adherence shortfalls
are most commonly found in the areas of

requirements definition, risk manage-
ment, testing, systems engineering, and
technical change management.

As illustrated in Figure 2, our assess-
ment data reveals that there are two gen-
eral types of process adherence shortfalls.
First are the technical or management
processes that are poorly executed, meaning
that they are ineffectively implemented or
performed for a particular program. For
example, we have found that poor pro-
gram team communication plagues many
programs, largely due to poor implemen-
tation of integrated product teams (IPTs)
structures within the program. Our analy-

Critical Program Performance Issues

26
43
43

48
52

61
70

74
83

87
87

91

Configuration Management
Decision Making

Interoperability
Program Schedule

Process Adherence
System Engineering

Product Quality - Rework
Program Planning

Product Testing
Requirements Management
Organizational Management

Process Capability

Id
en

ti
fi

ed
Is

su
e

A
re

as

Relative Occurrence (%)

Adherence Capability

Performance

Defined Team Program Processes Established
No Defined
Processes

In Place

No Accepted
Processes

Defined

Not Following
Accepted Processes

Process Adherence
Shortfall Issues

Following Accepted Processes

Process Capability Shortfall Issues
Program Team

Processes
Are Capable

R
udim

entary
P

rocesses
A

re M
issing

P
oorly

E
xecuted

P
rocesses

C
onstrained

P
rocesses

O
utm

oded
P

rocesses

P
ro F

orm
a P

rocesses

N
on-Integrated

T
eam

 P
rocesses

E
ffective P

rocesses

E
m

erging P
rocesses

M
issing Innovative P

rocesses

Figure 2: Types of Technical and Management Process Issues Encountered

Process Adherence Versus Process Capability

Process performance is the ability to specify, design, integrate, and execute the devel-
opment processes that meet the specific needs of a unique program. As shown in
Figure 2, program process performance is a combination of both process adherence
and process capability.

Our analysis showed that there are two primary types of process performance
shortfalls that impact the overall process performance within a program. The first type
of shortfall is related to process adherence. Process adherence is defined as the abil-
ity of an organization to adequately define and implement the technical and manage-
ment processes required for its programs. Typically, process adherence adequacy or
performance is evaluated against defined process reference models or standards that
a parent organization or enterprise has established as being necessary to ensure pro-
gram success3. Common process models include the Software Engineering Institute’s
Capability Maturity Model® (CMM®), the CMM IntegrationSM, and ISO [International
Organization for Standardization]/International Electrotechnical Commission Standard
15504:1998 for software process assessment. Achievement of a defined maturity level
is often viewed as a measure of process adherence for an organization.

The second type of process shortfall relates to process capability. Process capa-
bility is defined as the effectiveness of the defined and implemented organizational
processes in meeting a specific program’s technical and management requirements.
In general, process capability refers to how well an organization’s process models or
standards have been adapted and applied to address the specific characteristics and
needs of a particular program.

sis further showed that poor risk manage-
ment and measurement processes were
primary causative issues to the IPT prob-
lems.

In one program, we discovered that
more than 60 IPTs were created, with
many of the program team members
assigned to six or more individual teams.
Furthermore, these IPTs had the respon-
sibility, but not the authority, for making
technical decisions (in most cases only
recommendations). As one person on the
program succinctly put it, “It takes a long
time to make a bad decision.” We have
found that many best practices such as IPTs,
risk management, or measurement are not
being implemented properly on DoD
programs, and as a result may cause more
problems than they solve.

The second type of process adherence
shortfall can be described as constrained
processes. These are technical or manage-
ment processes that are not fully imple-
mented or executed because the program
team no longer supports or funds them.
For instance, we found that the full range
of software or systems testing that is
planned for at the beginning of a pro-
gram is often not carried out due to later
emerging program budgetary or schedule
shortfalls. Testing is in effect traded off
against higher-priority program cost or
schedule objectives. As a result, errors
that should have been discovered during
development testing slip into the opera-
tional system, causing major problems in
the field. One individual on such a pro-
gram commented, “My worry is not so
much whether we deliver on time, but that
should the system fail during its opera-
tional test, will we be able to tell why?”

Even when program teams were satis-
factorily performing the specified organi-
zational team technical and management
processes, our analysis showed that the
processes themselves were often inade-
quate to meet the program’s performance
objectives. In other words, there existed a
process capability shortfall, indicating that
the processes used were ineffective for
the situation encountered5. As before,
several different types of process capabil-
ity shortfalls have been identified as
shown in Figure 2.

The first type of process capability
shortfall is the outmoded process problem.
This occurs when a process model, stan-
dard, or practice may no longer be sup-
ported, or a specific process-related prac-
tice is inappropriate for the situation, e.g.,
it does not scale for implementation on a
large program. While the data showed
several instances of these issues, one
extreme situation was related to the man-

agement of software requirements. In this
particular program, the program team was
attempting to manage over 20,000 soft-
ware requirements — manually. While the
process and related procedures used for
requirements was still theoretically ade-
quate, it was proving to be extremely
labor intensive and error prone. The pro-
gram had outgrown the original process
capability. The cost of changing to a new
requirements process may have been seen
as too expensive and time consuming, so
the outmoded (and ineffective) process
remained in place.

A second type of process capability
shortfall is the pro forma process approach
common to many programs. This occurs
when a process is adequately defined but
performed in a check-in-the-box manner. In
other words, the process exists on paper,
but no one pays much attention to it. Said
another way, there is little value to the out-
put of the process. A common character-
istic of pro forma processes is that their
outputs are not utilized to make decisions
or to improve how the program is being
run. Program risk often falls into this cat-
egory. Risk management is performed on
most programs, but we found that it is
mainly for show. Risks are not communi-
cated and the identified risks frequently do
not influence program decision making.

A third type of process capability
shortfall identified by our systemic analy-
sis is the nonintegrated team process. This
occurs when a program team uses several
different and often incompatible process-
es to achieve the same end. This lack of
coordination of processes plagues multi-
ple supplier programs where work items
are shared. For instance, in one program,
because there was a lack of coordinated
configuration management processes
across the program team, the software
product ended up being handled and
managed very differently at different
times in the development process. This
led to major problems on the program as
no one could really be certain what ver-
sion was being used where.

Finally, as shown in Figure 2, there are
the processes that are needed for program
success, but no accepted practices have
been defined. For instance, there is the
emerging process situation where a new or
largely revised process is required, but the
program team has failed to define it in
sufficient detail. An emerging process
does not require adherence to an organi-
zational process standard since the
process standard in question may not
have been upgraded to include it. For
example, many programs appreciate that
they have to manage changes in technolo-

gy over the course of their program
development and beyond. However, our
assessments have found that many, if not
most programs, are managing technologi-
cal insertion in an ad hoc fashion, rather
than through any discretely managed
process. As a result, technology updates
are introduced haphazardly into the devel-
opment cycle. Since the process for man-
aging technology insertion is defined at
the higher Capability Maturity Model®

(CMM®) and CMM IntegrationSM maturity
levels – higher than those usually applied
on a DoD program – it is routinely over-
looked as being necessary. Additionally,
we found that innovative processes are
required to meet many program’s needs
and to improve their performance. We
found process shortfalls in systems inter-
operability management, family of sys-
tems management, and capability-based
acquisition management, among others.

When taken together, process adher-
ence or process capability issues have
been found to exist on nine out of every
10 programs assessed. Disturbingly, in 80
percent of the assessed programs where
no process adherence issues of merit
were found, process capability issues were
still discovered. While the program teams
are generally aware of the need for
improving their adherence to a set of
defined processes, the analysis results
showed that program team members do
not routinely consider their technical and
management process capabilities either
individually or from an overall program team
perspective. The result is a program team
process capability and performance short-
fall. In short, the full spectrum of a pro-
gram team’s organizational processes are
not rigorously evaluated and then tailored
to meet the specific characteristics or
requirements of the program in question.
We expect our results are typical across
most DoD programs.

Observations
Our systemic analysis of the recurring
program issues led us to several observa-
tions about DoD programs and process
performance. Our systemic data indicate
that new program teams often proceed
with processes that are applicable to the
previous program they were involved in –
not the one they are currently working on.
New technology, new policies, new oper-
ating environments, etc., pose new
process challenges to programs.
Unfortunately, these innovative process
challenges are often unrecognized until
well into a program’s development phase
– by which time it is too late. The current
data suggest that 10 percent to 20 percent

20 CROSSTALK The Journal of Defense Software Engineering August 2004

Software Engineering Technology

Understanding the Roots of Process Performance Failure

August 2004 www.stsc.hill.af.mil 21

of previously applicable technical or man-
agement processes are not appropriate or
effective for new program starts. This
unrecognized process need, or process gap,
is especially true in programs where inter-
operability, systems of systems, family of
systems, or network centric warfare
requirements are very high.

Second, most adherence-oriented
process models or standards are organiza-
tion-based; they are based on a general-
ized organizational standard of what most
projects require, not on what any specific
project requires. While these process
models are intended to be tailored for spe-
cific program needs, the data suggest that
in practice they often are not (see the side-
bar “Limitations of Adherence Models”).
It appears that many organizations simply
apply their standardized, approved corpo-
rate process to meet all of the diverse pro-
grams in their portfolio. Given the high
degree of technical and acquisition
change that DoD programs face, the
inability or unwillingness to adapt defined
organizational processes to meet a pro-
gram’s specific characteristics, constraints,
and requirements, significant perfor-
mance shortfalls are almost a given if sub-
stantial process tailoring is not done.

Furthermore, evaluations of adher-
ence to a program’s process standards are
generally made against organizational-
based process adherence requirements,
not project-specific capability needs. As a
result, the evaluation of process adher-
ence can discourage a complete evalua-
tion and tailoring of process standards to
meet specific program needs. In other
words, bidders on DoD programs end up
proposing the use of their corporate or
organizational standard processes rather
than processes that are tailored to the
program they are bidding on. Unfor-
tunately, one size does not fit all, and a best
practice for one program may not work at
all for another.

Fourth, there appears to exist a funda-
mental disconnect between the signifi-
cance of process adherence and process
capability. While process adherence is
necessary, it is an inadequate requirement for
ensuring process performance on a given
program. Process adherence is mistakenly
seen by too many program teams to auto-
matically equate to process capability.
These program teams often do not realize
that adherence to a process model equates
to real capability only when the process
model and the program’s technical and
management objectives, assumptions, and
constraints match extremely well. In a
best-case scenario, i.e., optimal program
process performance, three items are

closely aligned: (1) the specific program’s
process requirements; (2) the specific
implementation of the process model
with methods, procedures, and techniques
adapted for the program; and (3) the base-
line organizational process model or
inherent organizational process standard.
Since this is rarely the case, there will
almost always be a shortfall in program
process performance if the process
model is not tailored to the situation.

Our assessments also showed that a
program team’s process capability, as an
integrated entity, is rarely considered. A
program team’s overall process capability
does not necessarily equal the sum of the
parts of the individual team members.
There appears to be little thought given to
how the individual processes of the mul-
tiple members of a program team may
clash or conflict with one another. Just
because each program team member may
be part of a CMM Level 3 organization
does not mean the program team as a
whole operates as a Level 3 organization.
The program team must recognize early
that all of its individual technical and
management processes must be tailored
first to the specific situation, and then
adherence to that tailored process must
be enforced. Too many programs reverse
the sequence. A program team must mea-

sure a project’s likelihood of success in
relation to both process capability and
process adherence.

Finally, process integrity is very often
reduced due to time, money, or other pro-
gram pressures. For instance, a program
team member may be rated a CMM Level
3 at the beginning of a program, but fall
to a Level 2 or 1 by the middle or the end.
Similarly, the program team’s process
maturity may be a Level 3 at program start
but it, too, will likely degrade over time.
The impact of process degradation is
almost never taken into account during
program planning, and represents a real
threat to program success.

Conclusions
As programs become more complex and
as the future military environment
becomes more inter-operative, the man-
agement and technical process perfor-
mance required for successful program
execution needs to keep pace. From our
systemic analysis across recent DoD pro-
grams, several conclusions can be drawn:
• Process improvement efforts have

overcome the past problem of indi-
vidual program team members miss-
ing rudimentary technical or manage-
ment processes. However, in all of our
assessments, we never encountered a

Limitations of Adherence Models

The Software Engineering Institute’s Capability Maturity Model® (CMM®) and CMM
IntegrationSM have been the favored models against which organizational adherence to
software engineering processes are measured. Attaining CMM Level 3 has been the
target maturity level DoD programs expect their supplier software development orga-
nizations to reach. We have found in our assessments that there is a strong expecta-
tion by DoD managers that by achieving CMM Level 3, their software developers (gov-
ernment or contractor) will be equipped to control many if not most of the problems
associated with software development on a program.

While setting the CMM Level 3 as a goal to reach has improved software devel-
opment in DoD programs, it does not guarantee in and of itself that software develop-
ment on a program will be problem- or risk-free. Many program managers do not
understand the limitations of the CMM, and therefore, assume program process per-
formance results that the CMM neither promises nor can deliver.

It is important to remember that the CMM is a model aimed at improving an orga-
nization’s software development process, not the development process of any specif-
ic program. The CMM assumes that for an individual program, the organization’s stan-
dard software process (OSSP) will be tailored to meet the individual program’s require-
ments.

Unfortunately, our assessments have found that tailoring of the OSSP (by which
we include the methods/procedures/techniques that implement that process) is often
not the case in practice. What usually happens is that the OSSP is used as is in a pro-
gram and little tailoring is performed. This is acceptable if the OSSP and the program-
specific software process needs are in close alignment. However, this alignment is
unlikely to happen in the general case.

Currently, there is no formal evaluation method that routinely assesses the man-
agerial and technical processes required by the program team as a whole. The data
shows that this issue also needs to be addressed if programs are to increase their
chances of success.

22 CROSSTALK The Journal of Defense Software Engineering August 2004

Software Engineering Technology

program where the system was being
developed by a single organization.
Not only is it now time to focus on
process performance rather than just
process adherence, but also on team
process performance as well as indi-
vidual program team member process
performance.

• The DoD program teams must be
educated in what process perfor-
mance means, especially the difference
between process adherence – follow-
ing some repeatable process – and
process capability – the true effective-
ness of that process in execution.
Knowing the difference can be the
determining factor between program
success and failure.

• The DoD program teams need to
evaluate the full spectrum of technical
and management process require-
ments, and then tailor their organiza-
tionally based adherence models to
meet specific program needs. Careful
attention must be given on how to
deal with process areas that are out-
side either the general level of adher-
ence desired or the process adherence
model itself.

• The DoD programs should be
encouraged to assess their program
team’s overall process capability. The
data suggest that process capability

and possibly process adherence be
evaluated at request for proposal and
at major milestone reviews at the very
least to prevent process performance
degradation.

• Individual program team members
need to collectively ensure that their
technical and management processes
meet the needs of the program and
not necessarily just individual needs.

• The DoD must foster the develop-
ment of forward-looking, innovative
processes and practices that are capa-
ble of dealing with the future com-
plexity of DoD acquisitions, develop-
ments, and deployments.
Future DoD system complexities will

put more pressure on not only software,
but also systems engineering and manage-
ment processes. These processes will
need to be more capable, coordinated,
and team-integrated. The gap between
program expectations and the ability of
program teams to produce such systems
will continue to grow unless actions are
taken to solve the process performance
problems in a systemic manner.◆

Reference
1. Baldwin, Kristen, and Laura Dwinnell.

“Help Identify and Manage Software
and Program Risk.” CrossTalk
Nov. 2000: 8-11.

Notes
1. This approach was developed at the

Research Development and Engineer-
ing Command-Armament Research
Development and Engineering Cen-
ter, Picatinny Arsenal, N.J., and was
applied in support of the DoD’s Tri-
Service Assessment Initiative (TAI).
After this article was written, the tech-
nical direction of TAI was changed.

2. The results are based upon 23 of the
50 programs assessed. Although over
50 program assessments were con-
ducted, only those that were consis-
tent in terms of issue scope and appli-
cation of the technical assessment
process were included in the systemic
analysis program base.

3. These models or standards are
designed to meet generic program
process requirements, but not the spe-
cific process needs of an individual
program.

4. This category includes programs with
software and other processes that did
not meet program team policies or
proposed standards, for instance, pro-
grams that required CMM Level 3 but
the program team was only CMM
Level 2.

5. We assume that a process adherence
shortfall also translates into a process
capability shortfall.

About the Authors

Laura M. Dwinnell is
an information technol-
ogy employee at Nor-
thrup Grumman, spe-
cializing in process reen-
gineering and quality im-

provement. She was a key contributor to
the Tri-Service Assessment Initiative and
to the systemic analysis model used to
perform analysis on the causative issues
surrounding Department of Defense
program performance shortfalls.
Dwinnell has a bachelor’s degree in
mathematics from George Mason
University and a master’s degree in oper-
ations research and management science.

Northrup Grumman IT
7575 Colshire DR
M/S C6W1
McLean,VA 22102
Phone: (703) 883-8707
Fax: (703) 556-3574
E-mail: laura.dwinnell@ngc.com

Robert N. Charette,
Ph.D., is the presi-
dent/chief risk officer of
the ITABHI Corpo-
ration and the director of
the Enterprise Risk

Management and Governance service
for the Cutter Consortium. Charette has
worked in all facets of risk management,
and has designed and led major interna-
tional defense and commercial program
assessments for over 20 years. Charette
was the chief designer of the Tri-Service
Assessment Initiative assessment
methodology, and was a primary analyst
on the systemic analysis team. He is now
involved in designing an assessment
approach for total program team perfor-
mance in system-of-systems enterprises.

11609 Stonewall Jackson DR
Spotsylvania,VA 22553-4668
Phone: (540) 972-8150
E-mail: charette@itabhi.com

John McGarry is the
lead engineer for Mea-
surement and Perfor-
mance Analysis for the
Quality Engineering and
System Assurance Direc-

torate at the U.S. Army Armament
Research Development and Engineering
Center (ARDEC). McGarry was the lead
architect in the development and appli-
cation of the Tri-Service Assessment
Initiative assessment methodology. He is
currently implementing integrated mea-
surement, risk, and assessment technolo-
gies in support of government and
industry systems development programs
under ARDEC’s Capability Based
Performance Improvement program.

U.S.Army ARDEC
AMSRD-AAR-QES
BLDG 92
Picatinny Arsenal, NJ 07806
E-mail: jmcgarry@pica.army.mil

August 2004 www.stsc.hill.af.mil 23

Software modules comprise a large part
of life- and mission-critical systems.

System crashes are more likely to be the
result of a fault in the software than in the
hardware. In spite of our best efforts at
removing the errors/faults (bugs1) before
deploying those systems, it is wise to
assume that bugs remain in the system and
those bugs often lead to failures (crashes).

Software fault tolerance is aimed at tolerat-
ing those residual faults by building mech-
anisms to watch for failures and recover
from them [1, 2]. Fault tolerance is a reac-
tive approach: Failures usually happen at
unexpected times, and the built-in mecha-
nisms to recover from those failures will
kick-in to restart the system and the ser-
vice. However, these unscheduled inter-
ruptions in service are expensive and can
be life-threatening. This article describes a
proactive, preventive technique called soft-
ware rejuvenation that prevents faults from
becoming failures.

Lawrence Bernstein observed in 1990
that faults/bugs, when triggered in soft-
ware, do not always cause failures/crashes
immediately but take the system into a
state where it begins to decay2. This decay
has symptoms of memory leakage, broken
pointers, unreleased file locks, numerical
error accumulation, etc., causing gradual
degradation in availability of service and
data quality and eventually leading to a
failure/crash.

Based on this observation, a new
method to enhance the dependability of a
software system, called software rejuvenation,
was introduced in 1995 by Kintala and his
colleagues in Bell Labs [1, 3]. Software
rejuvenation is a proactive approach that
involves stopping an executing process
periodically or when a failure is imminent,
cleaning up the internal state of the sys-
tem, and then restarting it at a known
healthy state to prevent a predicted future
failure.

Software rejuvenation is as intuitive as
occasionally rebooting your PC, except
that it was never defined, implemented,

modeled, and analyzed for software sys-
tems before 1995 [3]. Shari Pfleeger used
the term software rejuvenation to mean,
“…looking back at software work prod-
ucts to try to derive additional informa-
tion …” in her seminal software engineer-
ing book [4]. Her use differs from ours as
we focus on the execution of the software
during its mission, and she focuses on the
software development process.

Use
Since the 1960s, data communication
designers knew to have software modules
restart a communication line when it

hung. Communication line handlers often
include retry logic to restart a line if it
hangs. IBM implemented these techniques
in its data communication systems. Their
system network architecture software was
especially robust to communication line
hangs and restarted lines several times
once a hang was detected.

An early implementation of this tech-
nique was part of the Safeguard

Antimissile Missile System software
implemented in the 1960s. Software
designers noted that hangs could occur
once error reporting buffers were full.
Rather than clearing the buffers, a simple
fix was implemented to restart the lines
for the remote launch sites periodically
when the system was in a peacetime sur-
veillance mode. This avoided extraneous
error reporting and improved the avail-
ability of the system. Separate mainte-
nance software monitored the quality of
the communication lines.

Software rejuvenation technology
became the modern realization of this
early design that restarts a line before the
hang to avoid potential secondary prob-
lems. It is a low-cost, easy-to-implement
technology that makes systems more
trustworthy in telecommunication sys-
tems.

A billing data collector system, origi-
nally built by AT&T and used in most of
the U.S. regional telephone companies,
was the first system that used software
rejuvenation for the entire system and
whose use was modeled and analyzed [3].
Since then it has been used in many
telecommunication applications, transac-
tion processing systems, and Web servers
[5]. Billing system failures and the use of
software rejuvenation to prevent those
failures, as described in [3], are quite simi-
lar to the failures and the fix that Nick van
der Zweep described recently in Computer
World 3.

Software rejuvenation is also imple-
mented in IBM's Director Resource
Manager [6] for use in applications built
on Netfinity cluster systems. Netfinity
Director provides an interface to rejuve-
nate an application using a time interval as
well as a prediction based on a number of
operating system resource values.

The X2000 computing system for
NASA’s 15-year long Pluto-Kuiper
Express mission has stringent constraints
in both performance and dependability.
The mission itself has three phases: initial

Software Rejuvenation

Lawrence Bernstein and Dr. Chandra M. R. Kintala
Stevens Institute of Technology

Here is a design approach that makes software more trustworthy, called software rejuvenation. It is a periodic, pre-emptive
restart of a running system at a clean internal state that prevents latent faults from becoming future failures. It was used in
systems ranging from a Lucent billing unit to NASA's long-duration space mission to Pluto, and is implemented in IBM's
Netfinity resource manager. It is easy to apply, uses very little central processing unit time, increases software reliability by two
orders of magnitude, and is recommended for all software-intensive systems.

“A billing data collector
system, originally built
by AT&T and used in

most of the U.S. regional
telephone companies,
was the first system
that used software
rejuvenation for the
entire system and

whose use was modeled
and analyzed.”

Cruise phase of 12 years, Encountering phase
of four months, and Exploration phase of
three years. The X2000 system has several
processor strings, and all their computing
power is needed during the critical
Encountering phase while only a subset of
the strings is required to be in service dur-
ing Cruise and Exploration phases. This
aspect is made use in the X2000 by rotat-
ing the individual processor strings to an
on-duty and off-duty cycle and rejuvenat-
ing the software [7] to increase system reli-
ability.

Recent experiments at Stevens
Institute of Technology showed that
datalink protocols suffering memory leak
failures could be made reliable using reju-
venation libraries without having to fix the
memory leak bug [8]. In essence, rejuve-
nation bounds the execution space for the
working software so that latent failure
modes are not executed. Had this technol-
ogy been used in the Patriot Missile sys-
tem (see the next section) during the first
Iraq war, the counter overflow problem
causing the anti-scud system to fail would
not have occurred.

Patriot Missile Case History
On Feb. 11, 1991, the Patriot
Project Office received Israeli data
identifying a 20 percent shift in the
Patriot system's radar range gate
after the system had been running
for eight consecutive hours. This
shift was significant because it
meant that the target (in this case,
the Scud) was no longer in the cen-
ter of the range gate. The target
needs to be in the center of the
range gate to ensure the highest

probability of tracking the target.
The range gate algorithm deter-
mines if the Scud is in the Patriot's
firing range. If it is, the Patriot fires
its missiles.

Patriot Project Office officials
said that the Patriot system would
not track a Scud when there is a
range gate shift of 50 percent or
more. Because the shift is directly
proportional to time, extrapolating
the Israeli data (which indicated a
20 percent shift after eight hours)
determined that the range gate
would shift 50 percent after about
20 hours of continuous use.
Specifically, after about 20 hours,
the inaccurate time calculation
becomes sufficiently large to cause
the radar to look in the wrong
place for the target. Consequently,
the system fails to track and inter-
cept the Scud.

The range gate's prediction of
where the Scud will next appear is
a function of the Scud's known
velocity and the time of the last
radar detection. Velocity is a real
number that can be expressed as a
whole number and a decimal (e.g.,
3750.2563 miles per hour). Time is
kept continuously by the system's
internal clock in tenths of seconds
but is expressed as an integer or
whole number (e.g., 32, 33, 34,
etc.). The longer the system has
been running, the larger the num-
ber representing time. To predict
where the Scud will next appear,
both time and velocity must be
expressed as real numbers. Because
of the way the Patriot computer
performed its calculations and the
fact that its registers are only 24
bits long, the conversion of time
from an integer to a real number
cannot be any more precise than 24
bits. This conversion results in a
loss of precision causing a less
accurate time calculation. The
effect of this inaccuracy on the
range gate's calculation is directly
proportional to the target's velocity
and the length of time the system
has been running. Consequently,
performing the conversion after
the Patriot has been running con-
tinuously for extended periods
causes the range gate to shift away
from the center of the target, mak-
ing it less likely that the target will
be successfully intercepted.

By automatically restoring the
registers to a safe initial state every

eight hours when there are no tar-
gets in track the system can avoid
making the fault into a failure. The
problem need not be fixed in the
algorithm itself. This is precisely
the effect of software rejuvenation.

This was not the first time
this type of problem caused an
ABM [antiballistic missile] system
to fail. During the Safeguard
Antimissile Test Program conduct-
ed at Meck Island in the Kwajalein
Atoll, a similar problem occurred
in the early 1970s. The test site was
in an extended hold due to a range
problem. The computers and
radars scanned the sky for the tar-
get that was still on the launch pad
in California. After several hours of
idling, the antimissile system com-
puter crashed. A timing register
overflowed. The system was not
tested in this configuration. The
problem was found and fixed and
well documented in the Mission
Test Reports. Further study led to
the innovative idea to restart the
computer periodically when it was
scanning the sky so that it returned
to a known tested state. This
design was included in the tactical
system design. The design was later
applied to avoiding hash table
problems in a telephone data
switch, and collecting billing data
from telephone switches, but
unfortunately not in the follow-on
Patriot antimissile system. [9]

Modeling and Analysis
Software rejuvenation incurs overhead
and should be done at a time when the
cost due to service interruption is mini-
mal. Hence modeling the system to find
optimal rejuvenation times is crucial. A
simple and useful model based on contin-
uous-time Markov chains was first intro-
duced in [3] to analyze software rejuvena-
tion.

Figure 1 shows the model for system
A without rejuvenation and Figure 2 is the
model for system A with rejuvenation. S0
is the initial robust state of system A, SP is
the failure probable state, and SF is the
failure state. The transition time from the
failed state SF to robust state S0 is expo-
nentially distributed with rate r1 (the repair
rate), the transition rate from robust state
S0 to failure probable state SP is r2, and λ
is that rate for transition from a failure
probable state to a failed state. If the sys-
tem performs rejuvenation, it will go from
SP to SR at rate r4 and will transition to

24 CROSSTALK The Journal of Defense Software Engineering August 2004

Software Engineering Technology

S
F

S
P

S
0

r
2

r
1

λ−

S
F

S
P

S
0

r
2

r
1

λ−
S

R

r
3

r
4

Figure 1: Probabilistic State Transition Model
for A Without Rejuvenation

S
F

S
P

S
0

r
2

r
1

λ−
S

R

r
3

r
4

Figure 2: Probabilistic State Transition Model
for A With Rejuvenation

robust state at rate r3.
From this model you can compute the

expected downtime due to rejuvenation
over period L to be (λ/r1+r4/r3)/(1+λ/r1+
r4/r3+(λ+r4)/r2) x L. For example, suppose
system A has the following profile:
1. Its mean time between failures

(MTBF) is three months; hence, its
failure distribution rate λ is
1/MTBF=1/(3x30x24).

2. Its expected repair time is two hours
after an unexpected failure, so its
repair distribution rate r1 is (1/2)=0.5.

3. Its expected time to go from robust
state to a failure probable state is 10
days; hence, its r2 is 1/(10x24).

4. Its expected repair time after a sched-
uled failure is 10 minutes, so its r3 is
(1/(1/6))=6.
The expected downtime of A over a

period of one year will then be 7.19 hours
without rejuvenation (r4=0) and 6.36
hours with a rejuvenation frequency of
two weeks (r4=1/(14x24)).

This model was extended using
Stochastic Petri Nets to study rejuvenation
using the cluster-based fail-over mecha-
nisms in IBM’s Netfinity systems [6].
Using this model, it has been shown, for
example, that in a two-node cluster system
running a database application with one
node acting as a spare, the reduction in
downtime due to a software rejuvenation
interval of 100 hours is 0.74. In the X2000
for the Pluto-Kupier mission, analysis of
reliability due to software rejuvenation
showed two orders of magnitude
improvement and the optimal interval was
found to be 31.2 weeks in the 12-year long
Cruise phase [7].

A number of other modeling tech-
niques were developed to study software
rejuvenation in other application scenar-
ios, including the Markov regenerative
process model for transaction-based sys-
tems, the Weibull distribution model to
combine check pointing and rejuvenation,
and several others [10].

The Future
Software rejuvenation is ready for indus-
try-wide deployment. It can make software
systems more trustworthy. Good designers
will use it and move from the state of the
art to the state of the practice. It is a good
design practice for individual systems.

Software rejuvenation is one aspect of
self-healing that has gained research inter-
est recently. There are some interesting
new problems for software rejuvenation in
large-scale, networked, self-healing sys-
tems. We describe some of those prob-
lems here and make some suggestions:
1. For networked applications, we need

to monitor and gather the availability
and quality of all the required
resources for the application across
the network, and then synthesize that
gathered data and make a prediction
about possible failure of the applica-
tion or a component in the application.
Network application monitoring might
be hard to do in such a generalized
fashion. You can perhaps do it in a
limited domain such as a Voice over
Internet Protocol (VoIP) application
in an enterprise network.

2. Self-healing systems on a network
need alternate paths for communica-
tion between components to avoid an
impending failure. This may be hard to
do in a generalized fashion. But in
much the same way as in clustered sys-
tems providing redundancy for cen-
tralized applications, you can perhaps
provide alternate communication

paths for some self-healing applica-
tions (for example, VoIP) using alter-
nate service provider networks.

3. Modeling and implementation have
several problems due to their large-
scale nature. What is a state in a large-
scale system when state is across sever-
al products and systems in a network?
Perhaps, you need to model the system
in a hierarchical, tree-structured fash-
ion decomposing the state into smaller
units as you need it for analysis. Failure
symptoms are at a system/network
(macro) level but rejuvenation actions
are at a component (micro) level; how
do you correlate the two? This topic is
perhaps related to event correlation in
network management. How do you do
rejuvenation efficiently in very large

systems? Perhaps gradual load shed-
ding can be used. What is a safe (clean
internal) state to back up to? How do
you back up to that state?

Conclusion
Software rejuvenation is a periodic, pre-
emptive restart of a running system at a
clean, internal state to prevent future fail-
ures. It was used in systems ranging from
a Lucent billing unit to NASA's long-dura-
tion space mission to Pluto, and is imple-
mented in IBM's Netfinity resource man-
ager. It is one aspect of self-healing sys-
tems. Interesting future research direc-
tions for software rejuvenation and self-
healing are in large-scale networked sys-
tems built with commercial off-the-shelf
components and open interfaces.◆

References
1. Bernstein, L. “Software Fault Tol-

erance Forestalls Crashes: To Err Is
Human, to Forgive Is Fault Tolerant”
in Advances in Computers 58. Highly
Dependable Software. Ed. M. Zel-
kowitz. Academic Press, 2003: 240-285.

2. Lyu, M., Ed. Software Fault Tolerance.
New York: John Wiley, 1995.

3. Huang, Y., C. Kintala, N. Kolettis, and
N.D. Fulton. Software Rejuvenation:
Analysis, Module and Applications.
Proc. of 25th Symposium on Fault
Tolerant Computing FTCS-25,
Pasadena, CA, June 1995: 381-390
<www.ece . s t evens - t e ch . edu/~
ckintala/Papers/RejuvFTCS25.pdf>.
The Web site <www.software-
rejuvenation.com>, maintained by
professor Trivedi at Duke University,
has a collection of follow-up research
papers on the topic.

4. Pfleeger, S.L. Software Engineering
Theory and Practice. 2nd ed. Prentice
Hall, 2001: 496-502.

5. Li, L., K. Vaidyanathan, and K.S.
Trivedi. “An Approach for Estimation
of Software Aging in a Web Server.”
International Symposium on Empiri-
cal Software Engineering, Nara, Japan,
Oct. 2002.

6. Vaidyanathan, K., R.E. Harper, S.W.
Hunter, and K.S. Trivedi. Analysis and
Implementation of Software Rejuven-
ation in Cluster Systems. Proc. of the
Joint Intl. Conference on Measure-
ment and Modeling of Computer
Systems, ACM SIGMETRICS 2001/
Performance 2001, Cambridge, MA,
June 2001.

7. Tai, A.T., L. Alkalai, and S.N. Chau.
“Onboard Preventive Maintenance: A
Design-Oriented Analytic Study for
Long-Life Applications.” Performance

August 2004 www.stsc.hill.af.mil 25

Software Rejuvenation

“Recent experiments at
Stevens Institute of

Technology showed that
data link protocols

suffering memory leak
failures could be made

reliable using
rejuvenation libraries

without having to fix the
memory leak bug.”

Evaluation 35.3-4 (June 1999): 215-
232.

8. Bernstein, L., Y.D. Yao, and K. Yao.
“Software Rejuvenation: Avoiding
Failures Even When There Are
Faults.” The DoD SoftwareTECH
News 6.2 (Oct. 2003): 8-11 <www.
softwaretechnews.com>.

9. General Accounting Office. “B-
247094, Report to the House of
Representatives.” Washington, D.C.:
GAO, Information Management and
Technology Division, 4 Feb. 1992
<www.fas.org/spp/starwars/gao/im9
2026.htm>.

10. Bao, Y., X. Sun, and K. Trivedi.
Adaptive Software Rejuvenation:
Degradation Models and Rejuvenation
Schemes. Proc. of The International
Conference on Dependable Systems
and Networks, San Francisco, CA,
June 2003.

Notes
1. We use the terms errors, faults, and bugs

interchangeably for software systems
in this article, even though there are
some subtle differences in academic
literature.

2. Software decay, sometimes called
aging, is not the same as software
obsolescence due to changing require-
ments from the system.

3. Go to <www.computerworld.com>
and enter 43636 in QuickLink box, or
click on <www.computerworld.com/
softwaretopics/software/story/0,1080
1,88872,00.html>.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering August 2004

About the Authors

Chandra M.R. Kintala,
Ph.D., is a distinguished
service professor at
Stevens Institute of
Technology. Prior to
that, he served as vice

president of the Network Software
Research and Realization Center in
Avaya Labs, a spin-off from Bell Labs.
Previously, he was director of
Distributed Software Research in Bell
Labs. Kintala has done pioneering
research on Software-implemented Fault
Tolerance (SwiFT) for software-imple-
mented fault tolerance and software
rejuvenation. He received a
ComputerWorld-sponsored Smithsonian
medal for SwiFT in Lucent in 1998.
Under his management, his groups cre-
ated ExpertNet for enterprise network
Voice over Internet Protocol assess-
ment, and Gryphon for network layers
4-7 switch, etc. He has over 40 research
publications and five software patents.

Stevens Institute of Technology
Hoboken, NJ 07030
Phone: (908) 580-0991
Cell Phone: (908) 418-7455
E-mail: chandra@kintala.com

Lawrence Bernstein is
a professor of Software
Engineering at Stevens
Institute of Technology.
He is a member of the
board of the Center for

National Software Studies and director
of the New Jersey Center for Software
Engineering. Bernstein is an expert wit-
ness in arbitration cases where he assess-
es the quality and origins of a large soft-
ware system. He spent 35 years at Bell
Laboratories as chief technical officer
managing large software projects.
Bernstein holds eight software patents,
has given 24 talks, published one book,
and has written 58 articles on software
engineering. He conceived of the notion
of software rejuvenation, encouraged
work on studying the dynamic behavior
of software, applied and extended soft-
ware management techniques, and led
the work on adopting intermediate level
languages in support of military soft-
ware development.

Stevens Institute of Technology
Hoboken, NJ 07030
Phone: (973) 258-9213
Cell Phone: (862) 485-0814
E-mail: lbernstein@worldnet.

att.net

INCOSE
www.incose.org
The International Council on Systems Engineering (INCOSE)
was formed to develop, nurture, and enhance the interdiscipli-
nary approach and means to enable the realization of successful
systems. INCOSE works with industry, academia, and govern-
ment to disseminate systems engineering knowledge, promote
collaboration in systems engineering, establish integrity in sys-
tems engineering standards, and encourage research and educa-
tional support for systems engineering processes and practices.

Where in Federal Contracting?
www.wifcon.com
Where in Federal Contracting? is a free, noncommercial site
that serves the federal and state acquisition and the federal assis-
tance community, including public and private organizations. It
provides quick access to acquisition and assistance information
such as contract laws and pending legislation, current and pro-
posed regulations, courts and boards of contract appeals, bid

protest decisions, contracting newsletters, selected analysis of
federal acquisition issues, federal assistance policy, daily listings
of grants and cooperative agreements, archived listings of grants
and cooperative agreements, and federal assistance sites.

Practical Software and Systems
Measurement
www.psmsc.com
Practical Software and Systems Measurement (PSM): A
Foundation for Objective Project Management was developed
to meet today's software and system technical and management
challenges. The Department of Defense and the U.S. Army
sponsor PSM. The goal of the project is to provide project man-
agers with the objective information needed to successfully meet
cost, schedule, and technical objectives on programs. The PSM
is based on actual measurement experience on DoD, govern-
ment, and industry programs. The PSM supports current soft-
ware and system acquisition and measurement policy.

WEB SITES

Enterprise architects pride themselves on
their ability to make stakeholder require-

ments trade-offs, yet experience shows that
there comes a point when the size and com-
plexity of enterprise requirements, especially
in nontechnical areas, necessitate extending
traditional enterprise system framework
approaches (e.g., Department of Defense
architecture framework [1], Federal Enter-
prise Architecture Framework [2], The Open
Group Architecture Documentation [3], and
Zachman Framework [4]). This article iden-
tifies the areas where current enterprise
architecture approaches are too rigid or brit-
tle to deal with certain nontechnical and
nonfunctional architecture issues associated
with architecting (or re-architecting) any
large-scale enterprise.

In particular, this article focuses on
enterprises with funding, staffing, or political
constraints that require new technology/ser-
vices that replace or must be added to those
found in an existing set of applications. This
article introduces the term enterprise composi-
tion to describe a collection of agile process-
es, metrics, and design patterns that have
demonstrated applicability in dealing with
these issues.

Gap Analysis: Enterprise IT
Lessons Learned
There is an ever-expanding body of knowl-
edge dealing with enterprise architecture
frameworks [1, 2, 3, 4] as well as architecture
description [5, 6]. Experience has shown that
current approaches to enterprise architecture
dealing with large-scale enterprises can do
the following:
• Lead to unnecessarily rigid designs.
• Require wholesale technology upgrades

(i.e., a big bang).
• Focus on information technology (IT)

cost savings versus process cost savings.
• Result in local optimizations of systems,

leading to suboptimal overall enterprise
system performance.

• Become bogged down in stakeholder

political and cultural considerations.
• Rely on traditional metrics such as source

lines of code to determine progress.
Table 1 summarizes how enterprise com-

position addresses some of the shortcom-
ings associated with current approaches to
enterprise architecture with respect to large-
scale enterprise IT (EIT) systems. The sec-
tions that follow will elaborate on lessons
learned.

Enterprise Composition
Processes
The following sections describe enterprise
composition extensions to (1) EIT decision
making, (2) EIT framework boundary defin-
ition, (3) EIT product selection, and (4)
strategic enterprise metric definition.

EIT Decision-Making Process
Martin Fowler [5] recognized that most
architecture definitions consist of two ele-
ments: (1) breaking the system into parts,
and (2) decisions that are hard to change.
While it is often the case that enterprise

architects consider their architectural deci-
sions to be carved in stone for posterity,
when dealing with large enterprise systems,
the advice of Gen. George Patton may be
more applicable: “A good plan violently exe-
cuted today is better than a perfect plan exe-
cuted tomorrow.” That is, the composer,
while acknowledging that key decisions in
structure and policy need to be made, recog-
nizes that making every decision critical,
absolute, and perfect, results in bigger risk
and higher expense than having a (marginal-
ly) less-than-perfect architecture.

From an enterprise composition per-
spective, composers should apply a cus-
tomer-centric view following a seven-step
process:
1. Define customer goals.
2. Determine how to measure achievement

of those goals.
3. Compose a strategic target state that

accomplishes those goals.
4. Define the next tactical state on the path

to the strategic (i.e., final) state.
5. Assess which of customer’s goals will be

met in that next incremental implemen-

Enterprise Composition©

John Wunder
Lockheed Martin Systems Integration

Enterprise information system (EIS) architecture is a system of EISs composed to meet strategic enterprise goals. This com-
position requires the application of a different set of processes, design patterns, and metrics than those used for stand-alone
system architectures. For most enterprise architects, creating EIS architectures can be complicated and fraught with pitfalls,
detours, and dead ends. These problems generally are not related to technology but rather caused by misperceptions and cul-
ture clash. This article defines a new, agile, incremental approach to EIS architectures and enterprise composition, and shows
how it supports the creation and evolution of large EIS architectures such as the Air Force’s Global Combat Support System.

August 2004 www.stsc.hill.af.mil 27

© Lockheed Martin, 2004.

Enterprise Architecture Problems Enterprise Composition Solutions

•

• Requires mandated modernization efforts
just to comply with architecture.

•

•

•
capabilities. Modernizations are driven
by improved operational processes.

Focuses on integrating existing

Establishes a minimum set of flexible
interfaces between existing enterprise
components.

Imposes a rigid abstract specification on
all aspects of design.

• Primarily justified by cost savings through
information technology efficiencies
such as enterprise licenses and reduced
life-cycle costs.

Primarily justified by improved
higher-level mission processes with
IT efficiencies also applicable.

• Is technology-centric with either an
Enterprise Resource Planning or a
particular commerical off-the-shelf vendor
product set as the Silver Bullet.

• Is mission-centric and focused above the
technology infrastructure.

• Results in agonizingly slow decisions
focused on making the right choice
followed by possible holy wars demanding
endless justification of every decision.

• Results in customer-centric decisions
based on what works.

• Measures compliance and technology
efficiencies through reduction of resources
(e.g., systems turned off, reduced
operations staff, consolidated hardware
and software).

• Measures delivered capabilities and
mission efficiencies tied to enterprise
metrics (e.g., cost/flying hour, mission
capability, kill chain cycle time).

1

Table 1: Comparison of Enterprise Architecture and Enterprise Composition

28 CROSSTALK The Journal of Defense Software Engineering August 2004

Software Engineering Technology

tation of the architecture.
6. Determine how customer goal metrics

(to be discussed further in a section that
follows) will improve.

7. Commit to those improvements.
While the first three steps are often the

easiest, step four is the most important and
typically one that many enterprise architects
overlook. That is, determining how the
enterprise and its existing resources get from
their current state to the strategic state (i.e.,
determining what the most efficient and
timely path is to incrementally achieve this [a
road map to the] final state, and establishing
a process to determine what the next step
should be in that direction given the current
state and other requirements that have
evolved since the last incremental change in
the whole EIT). This determination involves
steps four through seven.

In this way, when the next increment is
fielded, its success will be judged not on
meeting a date but by measuring how well
customer’s goals are met. This establishes
consistency in the direction of enterprise
improvement from increment to increment
and through leadership changes.

EIT Framework Boundary Definition
Process
As stated previously, composers break the
enterprise system architecture into parts.
These parts often are organized into a
framework within which components pro-
viding certain services reside. The Global
Combat Support System-Air Force (GCSS-
AF) in Figure 1 shows an example of the
boundaries in an EIT framework. Enterprise
composition guides the composer to mini-
mize the enterprise boundary points to nat-
ural boundaries and enforce those minimum
boundaries rigorously. This insight is the
result of the composer following these
process steps:
1. Study the problem and solution domain.
2. Correlate the solution domain’s technical

architecture with existing standards,
products, and practices.

3. Define natural boundaries that cleanly

separate the EIT into services (see exam-
ples in Figure 1).

4. Define objective criteria for boundary
implementation.

5. Communicate all boundary information
to all enterprise architecture stakeholders.
The GCSS-AF enterprise information

system (EIS) [7] shown in Figure 1 has two
layered boundaries: the Application Frame-
work and the Integration Framework. The
natural dividing line between these layers is
the natural separation between Air Force mis-
sion information and commercial IT. All Air
Force mission-specific information is in the
Application Framework, and all generic IT
enablers are in the Integration Framework.

Within the GCSS-AF frameworks [8]
there are further sub-boundaries or layers. In
the Application Framework, the Open
Application Group (OAG) Interface Spec-
ification [9] provides a natural boundary (or
interface) for services upon which compo-
nents supporting the GCSS-AF Air Force
Doctrine 2-4 [10] can be structured. The
doctrine creates organizational and informa-
tion stewardship responsibilities mapped to
the OAG standard components such as
Inventory, Warehouse, General Ledger, or
Budget. In addition, the OAG Interface
Specification provides a set of extensible,
coarse-grained component boundaries sup-
ported by National Institute of Standards
and Technology content and syntax tests.

The Application Framework compo-
nents rely on services provided by the
Integration Framework, which relies on
standards such as Kerberos, Lightweight
Directory Access Protocol V3, Java
Authentication and Authorization Service,
Public Key Infrastructure, eXtensible
Markup Language, HyperText Transfer
Protocol, HyperText Markup Language,
Web services, Structured Query Language,
Portable Operating Systems Interface,
Transmission Control Protocol/Internet
Protocol, Simple Object Access Protocol,
Java 2 Enterprise Edition, or network to cre-
ate natural security, view, persistence, and
messaging boundaries. Objective tests are
based on reference implementations of the
pertinent standards.

By communicating these boundaries
effectively throughout the enterprise, the
composer enables the rapid delivery (i.e.,
composition) of capabilities. This allows
implementers to focus within their bounded
areas of concern and eliminates the need to
address areas outside their particular area of
concern. This approach results in a reduc-
tion of overall life-cycle cost through reuse
of existing services in the GCSS-AF EIT.

EIT Product Selection Process
When enterprise architects address the selec-

tion of commercial off-the-shelf products to
implement the technical architecture of an
enterprise system, they usually start by focus-
ing on each product’s capabilities and cost
(initial and life-cycle). They conduct exten-
sive trade studies documenting the require-
ments, weighing the requirements, and
assessing the products against those weights.

Often it is the case that, at the end of the
evaluation process, the difference between
the top products is not statistically signifi-
cant. Furthermore, a month later the results
could change because a new version is
released, the chosen product has problems
during implementation, or the architect
comes to the conclusion that most of the
top products could have done the job in the
first place. Enterprise composition guide-
lines help the composer improve the product
selection process by focusing on a more cus-
tomer-centric approach rather than a tech-
nology-centric approach. This agile and
incremental process consists of the follow-
ing steps:
1. Define the minimum set of mandatory

features the customer requires in the
product.

2. Determine what existing customer enter-
prise assets satisfy any of the mandatory
features, and allocate them to those
assets.

3. Perform high-level, paper, and trade
studies on the remaining unsatisfied fea-
tures using assessments by industry ana-
lysts like Gartner, Giga, or Forester to
enable a down select to a few products.

4. Instead of taking a technology-centric
approach, ask each vendor to provide
product compliance levels against the
remaining mandatory features. The next
step reflects the customer-centric enter-
prise composition view, as the composer
would now ask each vendor to provide at
least two reference accounts where exist-
ing vendor customers are already using
the product in a similar context.

5. Create a survey of the pertinent ques-
tions to ask these customer-reference
accounts.

6. Set up calls to those customers.
7. Collate the survey results to be used as

the prime input to the final selection.
8. Look at the leading candidate product

and compare it to the existing personnel
skills in the enterprise.

9. If there is a major disconnect between
the skill set required to implement the
product and the existing skills in the
enterprise, then consider the next candi-
date. The result may be that a less desir-
able product is preferable because it
could be implemented by the enterprise
at less cost and risk.
Following this customer-centric, enter-

Enterprise Architecture Problems Enterprise Composition Solutions

mandated modernization efforts
with architecture.

•

•

Processes

Information
Services

Technical Services

Infrastructure

Integration Services

{
{

Application
Framework

Integration
Framework

•
capabilities. Modernizations are driven
by improved operational processes.

Focuses on integrating existing

Establishes a minimum set of flexible
interfaces between existing enterprise
components.

I abstract specification on
a design.

• ustified by cost savings through
chnology efficiencies
rise licenses and reduced

l

Primarily justified by improved
higher-level mission processes with
IT efficiencies also applicable.

• entric with either an
E Resource Planning or a
p ommerical off-the-shelf vendor
p the Silver Bullet.

• Is mission-centric and focused above the
technology infrastructure.

• onizingly slow decisions
king the right choice

ossible holy wars demanding
ation of every decision.

• Results in customer-centric decisions
based on what works.

• pliance and technology
rough reduction of resources

(turned off, reduced
o staff, consolidated hardware

• Measures delivered capabilities and
mission efficiencies tied to enterprise
metrics (e.g., cost/flying hour, mission
capability, kill chain cycle time).

(Business Object Interfaces/
Reusable Business Components)

Figure 1: GCSS-AF EIS Framework
Boundaries

Enterprise Composition

August 2004 www.stsc.hill.af.mil 29

prise composition-based selection process is
usually less expensive than a rigorous, tech-
nical, architecture trade-study approach and
leads to a product proven to work with built-
in expertise from the reference account.

Enterprise Metrics
Architecture metrics have always been a dif-
ficult topic to quantify because of their mul-
tidimensional nature and lack of good mod-
eling tools. Often these metrics are technolo-
gy-focused and deal with the performance
attributes of the system such as throughput,
up time, or even implementation cost. From
an enterprise-composition perspective, enter-
prise architecture metrics measure strategic
enterprise goals. In the case of the U.S. Air
Force., a set of enterprise productivity mea-
sures could include mission capability (aggre-
gate status of the force) and sortie genera-
tion capacity. From an enterprise-composi-
tion perspective, the metrics chosen are used
to show how each increment of the EIT (the
addition of new technology/services or mis-
sion capabilities) has moved the enterprise
closer to the strategic enterprise goals.

Incremental Enterprise Architecture
Development Process
Most enterprise architects use the Unified
Modeling Language as the design notation to
document their architectures [6]. The Uni-
fied Software Development Process (USDP)
[11] provides a sound, repeatable process
model for software development and can be
used by enterprise architects to establish the
minimum, mandatory artifacts for each
increment of the enterprise architecture (e.g.,
an analysis, tactical, and strategic collabora-
tion diagram would be used to document the
goal state and each incremental step).

From an enterprise composition per-
spective, USDP needs to be extended at
both ends of the life cycle. For example on
GCSS-AF, the requirements definition phase
is proceeded by a business model specifica-
tion using activity diagrams and use-case dia-
grams, and the deployment/production
phase is extended by using a component
repository of XML metadata to facilitate
message routing and integration of services.

Enterprise Composition
Patterns
The role architecture and design patterns
[12] play in enterprise architecture is well rec-
ognized [5]. The underlying premise of a
design pattern is that,

... each pattern describes a problem
that occurs over and over again in
our environment, and then describes
the core of the solution to that prob-

lem, in such a way that you can use
this solution a million times over,
without ever doing it the same way
twice. [13]

From an enterprise composition per-
spective, the key patterns that are most use-
ful to the enterprise architect can be labeled
as boundary patterns in that they help orga-
nize the components and their interfaces so
that they form natural boundaries and hide
some of the dependencies that otherwise
would complicate these interfaces. Following
are the boundary patterns discussed in the
next sections (sections 2, 3, and 4 are applic-
able within application framework):
1. Layers Pattern.
2. Canonical/Domain Model Pattern.
3. Model/View/Controller Pattern.
4. Façade Pattern.

Layers Pattern
Usually the Layers pattern is used to define
the highest-level boundaries of an EIS. One
of the earliest and most widely known exam-
ples of the Layers pattern is the seven-layer
International Organization for Standardiza-
tion Reference Model (i.e., Application,
Presentation, Session, Transport, Network,
Data-Link, and Physical layers). Fowler states
that the purpose of layering is “to break
apart a complicated software system,” [5]
giving an architect the following:
1. Intellectual control and understanding

within layers.
2. Flexibility to substitute appropriate capa-

bilities at layers.
The number of layers varies according to

the area of focus. Fowler advocates three
layers [5] (Presentation, Domain, and Data
Source). Within GCSS-AF, the EIS is divid-
ed into two main layers, or frameworks,
which are subdivided into five sub-layers (see
Figure 1).

Canonical/Domain Model Pattern
From an enterprise composition perspective,
the Canonical/Domain Model pattern can
be used to reduce the number of point-to-
point interfaces. This allows the architect to
select the best tools for his or her job, know
the primary interfaces, and only support
interfacing to the canonical model decou-
pling the point-to-point interfaces.

Model/View/Controller Pattern
The Model/View/Controller (MVC) pattern

is another long-standing technique used by
system designers and architects to separate
(via boundary layers) the functionality (the
model) from the presentation (the view)
through an intermediary interface boundary
(the controller) that communicates between
component’s model and the view.

A derivative of the MVC pattern is the
Document View pattern. In this case, the
view is dictated by the graphical user inter-
face development tools that link graphical
forms with a relational database. The separa-
tion of concerns is still maintained between
the document/model and the view but the
controller function is subsumed within the
view function. This is a good pattern for
reports and is well supported by Microsoft’s
Toolset keeping the view synchronized with
the record set that typically provides the doc-
ument or model.

Façade Pattern
The Façade pattern is used to wrap a com-
ponent in order to simplify its interfaces. A
façade can be as simple as an extended script
Language Translation script for an XML
message or as complicated as an Enterprise
Application Integration Extract/Translate/
Load tool for a complex, proprietary system
interface.

Enterprise Maturity Levels
From an enterprise composition perspective,
enterprises that employ EIT mature in a pat-
tern similar to the levels described by the
Software Engineering Institute’s Capability
Maturity Model®. Large, enduring enterpris-
es follow a pattern as they mature. In that
pattern, an enterprise determines what gov-
ernance will provide the most effective sup-
port in evolving the EIS. Furthermore,
enterprises evolve over long periods of time,
and the type and amount of legacy system
technology can determine their maturity as
well. Using Moore’s law as the driving force
in the IT industry, the timeline in Figure 2
summarizes the technology shift compared
to the number of processors per person.

You should note that most enterprise
processes were automated in the 1960s and
1970s when there was little engineering guid-
ance and some severe technology con-
straints. The client/server era started the
shift from mainframe mindset in that most
functional areas felt the central enterprise
staff was slow and unresponsive, and the
central staff felt that the functional depart-

1

1946 1960 -70

Mainframe

1981 1990

ENIAC PC Client/Server Web

1995 2003 +

Pervasive

1/Millions 1/Thousands 1/Tens ++/One1+/One1/One 10

Figure 2: Timeline of Technology Shift Compared to Processors Per Person

Software Engineering Technology

ments did not understand the complexities
of what they were asking. It was at this point
in time that the functional departments took
control of their own destiny and within their
own control and budgets built the tools that
allowed them to respond to mission
demands.

These two sets of systems continued to
devolve apart along their own paths. The
central systems held onto the enterprise
applications – such as payroll – while the
departments grew department-centric
processes starting with simple analysis tools
and reports but growing into sophisticated
mission critical systems. Soon, with the Web
and office tools collecting information from
the abundance of individually designed
applications, it became clear that the indus-
try had lost control of the information.
Today, enterprises are consolidating and try-
ing to get control of their information
resources.

Assessment EIT Maturity and
Appropriate Governance
Enterprises are trying to regain control of
their information flow without restricting
the benefits gained from distributed compo-
sition. Table 2 details the maturity levels that
an enterprise evolves through, and the
respective decision characteristics, artifacts
delivered, measurements taken, and rewards
criteria for success.

Summary
Enterprise composition extends the range of
an enterprise architect to allow him or her to
address complex, evolving enterprise system

architectures. This article has described the
processes, metrics, and architectural design
patterns that have demonstrated applicabili-
ty in dealing with these unique challenges.◆

References
1. Command, Control, Communications,

Computers, Intelligence, Surveillance,
and Reconnaissance Architecture Frame-
work, v.2.0. 18 Dec. 1997 <www. afcea.
org/education/courses/archfwk2.pdf>.

2. Federal Enterprise Architecture Frame-
work, v.1.1. Sept. 1999 <www.cio.gov/
documents/fedarch1%2Epdf>.

3. The Open Group Architecture Frame-
work <www.opengroup.org/products/
publications/catalog/ar.htm>.

4. Zachman Framework <www.zifa.com>.
5. Fowler, Martin. Patterns of Enterprise

Application Architecture. Boston, MA:
Pearson Education Inc., Mar. 2003.

6. Clements, Paul, et al. Documenting
Software Architectures: Views and
Beyond. Addison-Wesley, 2003.

7. U.S. Air Force. Global Combat Support
System-Air Force UML Model, 2003
<www.gcss-af.com/cfs/uml>.

8. Global Combat Support System-Air
Force <www.gcss-af.com>.

9. Open Applications Group Inc. Open
Applications Group Interface Specifi-
cation v.8. OAGI, 2002 <www.open
applications.org>.

10. Cresta, Lt. Col. James. U.S. Air Force,
Combat Support Air Force Doctrine
Doc. 2-4. U.S. Air Force, 22 Nov. 1999
<www.dtic.mil/doctrine/jel/service
_pubs/afd2_4. pdf>.

11. Jacobson, Ivar, Grady Booch, and James
Rumbaugh. The Unified Software
Development Process. Addison Wesley
Longman, Inc. 1999.

12. Gamma, Eric, Richard Helm, Ralph
Johnson, and John Vlissides. Design Pat-
terns Elements of Reusable Object-Or-
iented Software. Addison-Wesley, 1995.

13. Alexander, Christopher, et al. A Pattern
Language. New York: Oxford University
Press, 1977.

30 CROSSTALK The Journal of Defense Software Engineering August 2004

2

Maturity Level/
Attributes

Chaotic Dictatorial Capability Optimized

Decision = Sub-optimal, focused on
specific need.

= Vendor/Technical criteria.
= Looking for silver bullet.

-= Sub optimal, focused on
specific need.

= Mandated standards.
= ERP focus.

= Optimum product
selections considering all
costs.

= Customer-centric
approaches.

= Core competencies
identified and emphasized.

= Business case analysis of
mandates.

= Driven by optimum
enterprise growth.

 = Members of key industry
leadership groups.

= Core competencies target
predator capabilities.

Artifacts = Closely coupled
throughout.

= Holistic deliverables all
required capabilities every
deliverable.

= No separation of layers.

 = Layering framework.
= Infrastructure

administration efficiencies.
 = Enterprise licenses.

 = Everything from Dictatorial.
 = Canonical Model.

= Enterprise Value Chains.

 rriors = Information wa
creating own weapons
against Canonical Model.

= In process measurements
mission performance
models for continuous
improvement.

Metrics = Meet delivery date. = IT efficiencies.
= Percent Earned Value

measurements.

= IT efficiencies.
= Earned Value based on

complete deliveries work
products.

 = Enterprise Mission
Measures.

-in to = Metric capture built
Enterprise Value Chains.

= Direct measurement of
each enterprise
contribution.

Rewards = Subjective assessment. = Subjective assessment. = Rewards tied to measured
capability delivery.

 Re= wards tied to measured
capability delivery.

Table 2: Enterprise Maturity Levels

About the Author

John Wunder is a certi-
fied Lockheed Martin
architect and has been
the lead system archi-
tect/composer on the
Global Combat Support

System-Air Force since 1999, and was
lead architect for the Dow Chemical
Process Control and software architect
for the U.S. Army battlefield digitization
project. Wunder has been involved in
information technology for more than 20
years.

Lockheed Martin
Systems Integration
1801 State RTE 17C
MD 0605
Owego, NY 13827
Phone: (607) 751-6096
Fax: (607) 751-2538
E-mail: john.wunder@lmco.com

BACKTALK

August 2004 www.stsc.hill.af.mil 31

Sometimes I feel like a procedureless
child, a long way from home. Then I

remember this marvelous story that my
great-grandfather never told me.

Once upon a time in the land of Need-
It-Right-Away, there was a great dearth of
well-written software. Software customers,
greatly desirous of obtaining applications
that did exactly what they wanted – yester-
day – and at the very least possible cost,
had rendered all of their in-house devel-
opers into beaten, sniveling hackers, who
cowered within fabric-covered holes, ate
fat mixed with refined flour and sugars,
updated their resumes, and dreamed of
better times. Then one day a lone devel-
oper from a neighboring province rode
into town, strode through the swinging
doors of the largest conference room,
hung up his spurs, and began to speak
with the local project managers as if he
planned to stay for a few accounting
cycles.

“There's not a charge number to be
had in any of our kingdoms,” he was told.
“Our needs are too urgent, we can’t afford
to impact any of our schedules by bring-
ing you on board. Besides, unless you can
provide a product before COB that is
exactly what we are imagining at this very
moment for less than minimum wage,
why, you’re just wasting our time.”

“Ah, no problemo” the lone developer
replied. “In fact, I was thinking of creating
an application to share with all of you
based on the stone development method.”
He pulled an old tempest-hardened laptop
from his saddlebag and booted it up. Then
he removed a small, smooth, bluish-tinted

stone from his pocket and carefully placed
it next to his machine.

By now, a flurry of e-mails and flash
notes with rumors of a new development
method had drawn many customers and
in-house developers to the conference
room. They scurried for chairs, popped
open containers of carbonated caffeine,
and brushed the crumbs of deep-fried
artificially flavored foods from their
sweatshirts. The lone developer closed his
eyes, stretched ergonomically, assumed an
enigmatic expression, and then wiggled
his fingers over the little blue stone by his
keyboard while all of the customers in the
room beamed their concept of an ideal
system at him via mental telepathy.

“Ahhh,” he said after several deep
cleansing breaths, “I do so much enjoy
stone development. Of course,” opening
one eye to peek at the customers, “stone
development with requirements – that's
hard to beat.”

The local developers gasped, but after
a moment one of the customers admitted
that he did have, somewhere, a list of spe-
cific and fairly well documented require-
ments that identified the greater portion
of what he imagined the ideal application
should provide. “Outta sight!” the lone
developer exclaimed as he leafed through
the pages and placed them next to his
stone. “You know, I once worked on a
stone development project with require-
ments and a few plans, and it was simply
incredible. After all,” he said with a wink
at the project managers, “just asking for
something by COB is a little vague, don’t
you think?”

One of the managers looked at his
customer, and between the two of them
came up with basic information for a
schedule and simple quality assurance and
configuration management plans.
Encouraged by this, several in-house
developers began to interact directly with
the customer, while the manager used the
simple metrics identified to track progress,
risks, and costs. Meanwhile the lone devel-
oper’s fingers flew over the keys of his
laptop, swiftly integrating the flood of
information that began to pour forth.
Design elements, reviews, testing, and
acceptance criteria, all clearly traced in a
matrix soon resulted in a secure, relation-
al, Section 508-compliant, real time, Web-
enabled, embedded application that was a
marvel to everyone who used it. It wasn’t
quite free or completed by COB the first
day, but no one seemed to notice.

The customers and managers of the
land of Need-It-Right-Away offered the
lone developer a prestigious title, a black
belt, and a great deal of money for his lit-
tle blue stone, but he graciously declined
and eventually rode off into the sunset.
However, history records that from that
time forth, there was no longer a lack of
well-written software within any of the
kingdoms of the land.

And all of the in-house developers,
who had taken very careful notes, began
to eat better and spend more time with
their families.

The End.
— Robert K. Smith

rkensmith@earthlink.net

Stone Software Development

www.stsc.hill.af.mil/crosstalk

CROSSTALKARCHIVES
isit CrossTalkonline and access 11 years of software-related
ticles in a fully searchable database that makes finding relevant and

mely information painless. Make CrossTalkyour first stop for all
ur software research needs.

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

THE DOOR TO THE CMMI IS
WAITING FOR YOU ...

DO YOU HAVE THE RIGHT KEYS?

THE DOOR TO THE CMMI IS
WAITING FOR YOU ...

If you want your organization to use common, integrated, and
improved processes for both Systems and Software, we can help.
The Software Technology Support Center will show your organ-
ization how to implement the process improvement method-
ology of the Capability Maturity Model® IntegrationSM (CMMI®), which
addresses productivity, performance, costs, and stakeholder
satisfaction. Make sure you have the right keys. Call us.

Software Technology Support Center
MASE • 6022 Fir Avenue • Building 1238 • Hill AFB, UT 84056 5820
801 775 5555 • DSN 775 5555 • FAX 801 777 8069 • www.stsc.hill.af.mil

® Capability Maturity Model and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

	Front Cover
	Table of Contents
	Systems Approach
	Managing Requirements for a System of Systems
	Applying CMMI to Systems Acquisition
	A Recommended Practice for Software Reliability

	Software Engineering Technology
	Understanding the Roots of Process Performance Failure
	Software Rejuvenation
	Enterprise Composition©

	From the Publisher
	Coming Events
	Call for Articles
	Web Sites
	BackTalk
	CrossTalk Archives

